# Electric Grippers <br> <br> LEH Series 

 <br> <br> LEH Series} ( $\in \mathrm{CH}_{\mathrm{is}}$ Rofs

## Step Motor (Servo/24 VDC)

- With drop prevention function
(Self-lock mechanism is provided for all series.)
Gripping force of the workpieces is maintained when stopped or restarted. The workpieces can be removed with manual override.
- Compact body sizes and long stroke variations Gripping force equivalent to the widely used air grippers is available.
- Possible to set position, speed and force. (64 points)
- Energy-saving product

Power consumption reduced by self-lock mechanism.

- With gripping check function

Identify workpieces with different dimensions/detect mounting and removal of the workpieces.

| Z Type (2 fingers) |  |  | -Page 432 |  |
| :---: | :---: | :---: | :---: | :---: |
| Compact and light, various gripping forces <br> LEHZ Series |  |  |  |  |
|  | , | Stroke/ | Gripping | force [ N$]$ |
|  | Size | ${ }_{\text {[mm] }}$ | Basic | Compact |
|  | 10 | 4 | 6 to 14 | 2 to 6 |
|  | 16 | 6 | 610 | 3 to 8 |
|  | 20 | 10 | 16 to 40 | 11 to 28 |
|  | 25 | 14 |  |  |
|  | 32 | 22 | 52 to 130 | - |
|  | 40 | 30 | 84 to 210 | - |

## F Type (2 fingers) >Page 458

Can hold various types of workpieces with a long stroke.

| EHF Series |  |  |
| :---: | :---: | :---: |
| Size | Stroke/ both sides [mm] | Gripping force [ N ] |
| 10 | 16 (32) | 3 to 7 |
| 20 | 24 (48) | 11 to 28 |
| 32 | 32 (64) | 48 to 120 |
| 40 | 40 (80) | 72 to 180 |

## ZJ Type (2 fingers) >Page 446

With dust cover (Equivalent to IP50) 3 types of cover material (Finger portion only)


## S Type (3 fingers) PPage 471

Can hold round workpieces.
LEHS Series

| Size | Stroke/ <br> both sides <br> $[\mathrm{mm}]$ | Gripping force [N] |  |
| :---: | :---: | :---: | :---: |
|  | Basic | Compact |  |
| $\mathbf{1 0}$ | 4 | 2.2 to 5.5 | 1.4 to 3.5 |
| $\mathbf{2 0}$ | 6 | 9 to 22 | 7 to 17 |
| $\mathbf{3 2}$ | 8 | 36 to 90 | - |
| $\mathbf{4 0}$ | 12 | 52 to 130 | - |

## Step Motor (Servo/24 VDC)

Controller/Driver

Step data
input type LECP6 Series

- 64 points positioning - Input using controller setting kit or teaching box

CC-Link direct input type LECPMJ Series*

EtherCAT ${ }^{\circledR} /$ EtherNet/IP ${ }^{\text {тм }} /$ PROFINET/DeviceNet ${ }^{\text {™ }} /$ IO-Link direct input type JXCE1/91/P1/D1/L1 Series

* Not applicable to CE

Pulse input type
LECPA Series

LEHZ Series/Size: 10, 16, 20, 25, 32, 40
LEHZJ Series/Size: 10, 16, 20, 25
LEHF Series/Size: 10, 20, 32, 40
-Compact and lightweight Various gripping forces

Weight: 165 g (LEHZ10)


Sealed-construction dust cover (Equivanentio (1950)

- Prevents machining chips, dust, etc., from getting inside - Prevents spattering of grease, etc.


## -3 types of cover material (Finger portion only)

- Chloroprene rubber (black): Standard
- Fluororubber (black): Option
- Silicone rubber (white): Option



Side tapped mounting


Through-hole in open/ close direction


Flat fingers


## Electric Gripper 3-Finger Type

## LEHS Series/Size: 10, 20, 32, 40

Can hold various types of workpieces with a long stroke.

-Can hold round workpieces.


## <Mounting Variations>

## LEHZ/LEHZJ Series

A When using the thread on the side of the body

$B$ When using the thread
on the mounting plate


C When using the thread
on the back of the body


## LEHF Series

A When using the thread on the body


B When using the thread on the mounting plate


When using the thread on the back of the body


## LEHS Series

A When using the thread on the mounting plate

$B$ When using the thread on the back of the body


Motor cable mounting direction can be selected.

LEHZ/LEHZJ Series



LEHF Series


## Application Examples

## Gripping of components that are easily deformed or damaged



Speed and gripping force control and positioning


## Step Motor (Servo/24 VDC)

## Electric Gripper 2-Finger Type LEHZ Series

| Model Selection | Page 432 |
| :---: | :---: |
| How to Order | Pages 438, 439-1 |
| Specifications | Page 440 |
| Construction | Page 441 |
| Dimensions | Page 442 |
| Finger Options | Page 445 |

## Step Motor (Servo/24 VDC)

## Electric Gripper 2-Finger Type/With Dust Cover LEHZJ Series

| Model | Page 446 |
| :---: | :---: |
| How to Order | Pages 452, 453-1 |
| Specifications | Page 454 |
| Construction | Page 455 |
| Dimensions | Page 456 |

Specific Product Precautions

## Step Motor (Servo/24 VDC) Controller




## Electric Actuators

## Grippers

## 2-Finger Type LEHZ series



2-Finger Type LEHF Series


2-Finger Type/With Dust Cover LEHZJ Series

## Step Motor (Sevo/24 VDC)



3-Finger Type LEHS Series
Step Motor (Senvo/24 VDC)


## LEHZ Series $>$ Pages 438, 439-1

## Selection Procedure

Step 1 Check the gripping force.
Calculate the
Check the
conditions.

required gripping force. | Select the model from the |
| :---: |
| gripping force graph. |
| pushing speed. |

## Example

Workpiece mass: 0.1 kg

Guidelines for the selection of the gripper with respect to workpiece mass

- Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 10 to 20 times Note) the workpiece weight, or more.
Note) For details, refer to the calculation of required gripping force.
- If high acceleration or impact forces are encountered during motion, a further margin of safety should be considered.
Example) When it is desired to set the gripping force at 20 times or more above the workpiece weight.
Required gripping force
$=0.1 \mathrm{~kg} \times 20 \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \approx 19.6 \mathrm{~N}$ or more
Pushing force: 70\%
Pushing force is one of the values of step data that is input into the controller.
Gripping point distance: 30 mm

Pushing speed: $30 \mathrm{~mm} / \mathrm{sec}$

## Calculation of required gripping force



When gripping a workpiece as in the figure to the left, and with the following definitions, F : Gripping force ( N )
$\mu$ : Coefficient of friction between the attachments and the workpiece
m : Workpiece mass (kg)
g: Gravitational acceleration ( $=9.8 \mathrm{~m} / \mathrm{s}^{2}$ )
mg : Workpiece weight ( N )
the conditions under which the workpiece will not drop are
$\underline{\mathbf{2}} \times \mu \mathrm{F}>\mathrm{mg}$
$\stackrel{2}{\overline{4}}$
Number of fingers
and therefore, $\mathbf{F}>\frac{\mathrm{mg}}{2 \times \mu}$
With " a " representing the margin, " F " is determined by the following formula

$$
\mathbf{F}=\frac{\mathrm{mg}}{2 \times \mu} \times \mathbf{a}
$$

"Gripping force at least $\mathbf{1 0}$ to $\mathbf{2 0}$ times the workpiece weight"

- The "10 to 20 times or more of the workpiece weight" recommended by SMC is calculated with a margin of "a" $=4$, which allows for impacts that occur during normal transportation, etc.



When the LEHZ2O is selected.

- A gripping force of 27 N is obtained from the intersection point of gripping point distance $L=30$ mm and pushing force of $70 \%$.
- Gripping force is 27.6 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 20 times or more.


## LEHZ20



- Pushing speed is satisfied at the point where $70 \%$ of the pushing force and $30 \mathrm{~mm} / \mathrm{sec}$ of the pushing speed cross.

Note) Confirm the pushing speed range from the determined pushing force [\%].
<Reference> Coefficient of friction $\mu$ (depends on the operating environment, contact pressure, etc.)

| Coefficient of friction $\mu$ | Attachment - Material of workpieces (guideline) |
| :---: | :---: |


| 0.1 | Metal (surface roughness Rz3.2 or less) |
| :---: | :---: |
| 0.2 | Metal |
| 0.2 or more | Rubber, Resin, etc. |

Note) - Even in cases where the coefficient of friction is greater than $\mu=0.2$, for reasons of safety, select a gripping force which is at least 10 to 20 times greater than the workpiece weight, as recommended by SMC.

- If high acceleration or impact forces are encountered during motion, a further margin should be considered.


## Selection Procedure

Step 1 Check the gripping force: LEHZ Series

- Indication of gripping force

The gripping force shown in the graphs below is expressed as " $F$ ", which is the gripping force of one finger, when both fingers and attachments are in full contact with the workpiece as shown in the figure below.

External Gripping State



## LEHZ16



- Set the workpiece gripping point "L" so that it is within the range shown in the figure below.

Internal Gripping State


Compact
LEHZ10L


## LEHZ16L



## LEHZ Series

Step Motor (Servo/24 VDC)

## Selection Procedure

Step 1 Check the gripping force: LEHZ Series


LEHZ25


LEHZ32


LEHZ40


* Pushing force is one of the values of step data that is input into the controller.
Compact
LEHZ20L


LEHZ25L


## Selection of Pushing Speed

- Set the [Pushing force] and the [Trigger LV] within the range shown in the figure below.

Basic


Compact


## Selection Procedure

Step 2 Check the gripping point and overhang: LEHZ Series

- Decide the gripping position of the workpiece so that the amount of overhang " H " stays within the range shown in the figure below.
- If the gripping position is out of the limit, it may shorten the life of the electric gripper.

* Pushing force is one of the values of

Basic step data that is input into the controller.

## LEHZ10



## LEHZ16



LEHZ20


Internal Gripping State


* Pushing force is one of the values of step data that is input into the controller.
Compact


## LEHZ10L



## LEHZ16L



## LEHZ20L



## LEHZ Series

## Selection Procedure

Step 2 Check the gripping point and overhang: LEHZ Series

Basic $\quad$ * Pushing force is one of the values of $\quad$ step data that is input into the controller.
LEHZ25


Compact
LEHZ25L


## LEHZ32



LEHZ40


## Selection Procedure

Step 3 Check the external force on fingers: LEHZ Series


Fv: Allowable vertical load


Mp: Pitch moment


My: Yaw moment



Mr: Roll moment
$\mathrm{H}, \mathrm{L}$ : Distance to the point at which the load is applied [mm]

| Model | Allowable vertical load <br>  Fv [N] | Static allowable moment |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  |  | Yaw moment: My [N•m] | Roll moment: Mr [N•m] |  |
| LEHZ10(L)K2-4 | 58 | 0.26 | 0.26 | 0.53 |
| LEHZ16(L)K2-6 | 98 | 0.68 | 0.68 | 1.36 |
| LEHZ20(L)K2-10 | 147 | 1.32 | 1.32 | 2.65 |
| LEHZ25(L)K2-14 | 255 | 1.94 | 1.94 | 3.88 |
| LEHZ32(L)K2-22 | 343 | 3 | 3 | 6 |
| LEHZ40(L)K2-30 | 490 | 4.5 | 4.5 | 9 |

Note) Values for load in the table indicate static values.

| Calculation of allowable external force (when moment load is applied) | Calculation example |
| :---: | :---: |
| $\text { Allowable load } F[N]=\frac{\mathbf{M} \text { (Static allowable moment) }[\mathbf{N} \cdot \mathrm{m}]}{\mathbf{L \times 1 0 ^ { - 3 } *}}$ | When a static load of $f=10 \mathrm{~N}$ is operating, which applies pitch moment to point $\mathrm{L}=30 \mathrm{~mm}$ from the LEHZ16K2-6 guide. <br> Therefore, it can be used. $\begin{aligned} & \text { Allowable load } F=\frac{0.68}{30 \times 10^{-3}} \\ &=22.7[\mathrm{~N}] \\ & \text { Load } f=10[\mathrm{~N}]<22.7[\mathrm{~N}] \end{aligned}$ |

# Electric Gripper 2-Finger Type C $\mathrm{CNO}_{\mathrm{os}}$ 

 LEHZ Series LEHZ10,16, 20, 25, 32, 40ROHS


| 1 Size |
| :---: |
| 10 |
| 16 |
| 20 |
| 25 |
| 32 |
| 40 |


3 Lead

| K | Basic |
| :---: | :---: |

(4) 2-finger type

8 Actuator cable type/length*3

| Standard cable [m] |  |
| :---: | :---: |
| Nil | None |
| S1 | 1.5 |
| S3 | 3 |
| S5 | 5 |

Robotic cable

| R1 | 1.5 | RA | $\left.10^{* 2}\right]$ |  |
| :--- | :--- | :--- | :--- | :---: |
| R3 | 3 | RB | $15^{* 2}$ |  |
| R5 | 5 | RC | $20^{* 2}$ |  |
| R8 | $8^{* 2}$ |  |  |  |



| 6 N $\square$$\square$ |  |  |
| :---: | :---: | :---: |
|  |  |  |
| (9) Controller/Driver type*4 |  |  |
| Nil | Without controller/driver |  |
| 6N | LECP6 (Step data input type) | NPN |
| 6 P |  | PNP |
| 1 N | LECP1 (Programless type) | NPN |
| 1P |  | PNP |
| MJ | LECPMJ*5 (CC-Link direct input type) | - |
| AN | $\begin{gathered} \text { LECPA*6 } \\ \text { (Pulse input type) } \end{gathered}$ | NPN |
| AP |  | PNP |

$10 \mathrm{I} / 0$ cable length ${ }^{* 7}$, Communication plug

| $\mathbf{N i l}$ | Without cable <br> (Without communication plug connector)*9 |
| :---: | :---: |
| $\mathbf{1}$ | 1.5 m |
| $\mathbf{3}$ | $3 \mathrm{~m}^{* 8}$ |
| $\mathbf{5}$ | $5 \mathrm{~m}^{* 8}$ |
| $\mathbf{S}$ | Straight type communication plug connector*9 |
| $\mathbf{T}$ | T-branch type communication plug connector*9 |

11 Controller/Driver mounting

| Nil | Screw mounting |
| :---: | :---: |
| $\mathbf{D}$ | DIN rail mounting*10 |

$J X C \square$ Series (For details, refer to page 439-1.)

## (9) Controller


*1 Size: 10, 16, 20, 25 only
*2 Produced upon receipt of order (Robotic cable only)
*3 The standard cable should only be used on fixed parts.
For use on moving parts, select the robotic cable.
*4 For details about controller/driver and compatible motor, refer to the compatible controller/driver on the next page.
*5 Not applicable to CE.
*6 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- $\square$ ) on page 596 separately.
*7 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 568 (For LECP6), page 582 (For LECP1) or page 596 (For LECPA) if I/O cable is required.

## $\triangle$ Caution

## [CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEH series and the controller LEC/JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) CC-Link direct input type (LECPMJ) is not CE-compliant.

## [UL-compliant products]

When conformity to UL is required, the electric actuator and controller/ driver should be used with a UL1310 Class 2 power supply.
*8 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.
*9 For the LECPMJ, only "Nil", "S" and "T" are selectable since I/O cable is not included.
*10 DIN rail is not included. Order it separately.
*11 Select "Nil" for anything other than DeviceNet ${ }^{\text {TM }}$.

## The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.

## <Check the following before use.>

(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).


* Refer to the Operation Manual for using the products. Please download it via our website, https://www.smcworld.com


## LEHZ Series

Step Motor (Servo/24 VDC)

## Compatible Controller/Driver

## LEC $\square$ Series

| Type | Step data input type | CC-Link direct input type | Programless type | Pulse input type |
| :---: | :---: | :---: | :---: | :---: |
| Series | LECP6 | LECPMJ | LECP1 | LECPA |
| Features | Value (Step data) input Standard controller | CC-Link direct input | Capable of setting up operation (step data) without using a PC or teaching box | Operation by pulse signals |
| Compatible motor | Step motor (Servo/24 VDC) |  |  |  |
| Maximum number of step data | 64 points |  | 14 points | - |
| Power supply voltage | 24 VDC |  |  |  |
| Reference page | Page 560 | Page 600 | Page 576 | Page 590 |

## JXC $\square$ Series

| Type | EtherCAT ${ }^{\circledR}$ <br> direct input type | EtherNet//PTM direct input type | PROFINET <br> direct input type | DeviceNet ${ }^{\text {TM }}$ direct input type | IO-Link direct input type |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Series | JXCE1 | JXC91 | JXCP1 | JXCD1 | JXCL1 |
| Features | EtherCAT ${ }^{\circledR}$ direct input | EtherNet/IP ${ }^{\text {TM }}$ direct input | PROFINET direct input | DeviceNet ${ }^{\text {TM }}$ direct input | IO-Link direct input |
| Compatible motor | Step motor (Servo/24 VDC) |  |  |  |  |
| Maximum number of step data | 64 points |  |  |  |  |
| Power supply voltage | 24 VDC |  |  |  |  |
| Reference page | Page 603-5 |  |  |  |  |

Specifications


| Model |  |  | LEHZ10 | LEHZ16 | LEHZ20 | LEHZ25 | LEHZ32 | LEHZ40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Open and close stroke/both sides [mm] |  | 4 | 6 | 10 | 14 | 22 | 30 |
|  | Lead [mm] |  | $\begin{aligned} & 251 / 73 \\ & (3.438) \end{aligned}$ | $\begin{aligned} & 249 / 77 \\ & (3.234) \end{aligned}$ | $\begin{aligned} & 246 / 53 \\ & (4.642) \end{aligned}$ | $\begin{aligned} & 243 / 48 \\ & (5.063) \end{aligned}$ | $\begin{aligned} & 242 / 39 \\ & (6.205) \end{aligned}$ | $\begin{aligned} & 254 / 43 \\ & (5.907) \end{aligned}$ |
|  | Gripping force <br> [ N ] Note 1) Note 3) | Basic | 6 to 14 |  | 16 to 40 |  | 52 to 130 | 84 to 210 |
|  |  | Compact | 2 to 6 | 3 to 8 | 11 to | o 28 | - | - |
|  | Open and close speed/ <br> Pushing speed [mm/s] Note 2) Note 3) |  | 5 to 80/5 to 50 |  | 5 to 100/5 to 50 |  | 5 to 120/5 to 50 |  |
|  | Drive method |  | Slide screw + Slide cam |  |  |  |  |  |
|  | Finger guide type |  | Linear guide (No circulation) |  |  |  |  |  |
|  | Repeated length measurement accuracy [mm] ${ }^{\text {l/beat }}$ |  | $\pm 0.05$ |  |  |  |  |  |
|  | Finger backlash/ one side [mm] Note 5) |  | 0.25 or less |  |  |  | 0.5 or less |  |
|  | Repeatability [mm] ${ }^{\text {Note 6) }}$ |  | $\pm 0.02$ |  |  |  |  |  |
|  | Positioning repeatability/one side [mm] |  | $\pm 0.05$ |  |  |  |  |  |
|  | Lost motion/one side[mm] ${ }^{\text {Note } 7)}$ |  | 0.25 or less |  |  |  | 0.3 or less |  |
|  | Impact/Vibration resistance [m/s ${ }^{2}$ ] ${ }^{\text {Note } 8)}$ |  | 150/30 |  |  |  |  |  |
|  | Max. operating frequency [C.P.M] |  | 60 |  |  |  |  |  |
|  | Operating temperature range [ ${ }^{\circ} \mathrm{C}$ ] |  | 5 to 40 |  |  |  |  |  |
|  | Operating humidity range [\%RH] |  | 90 or less (No condensation) |  |  |  |  |  |
|  | Weight [g] | Basic | 165 | 220 | 430 | 585 | 1120 | 1760 |
|  |  | Compact | 135 | 190 | 365 | 520 | - | - |
|  | Motor size |  | $\square 20$ |  | $\square 28$ |  | $\square 42$ |  |
|  | Motor type |  | Step motor (Servo/24 VDC) |  |  |  |  |  |
|  | Encoder |  | Incremental A/B phase (800 pulse/rotation) |  |  |  |  |  |
|  | Rated voltage [V] |  | 24 VDC $\pm 10 \%$ |  |  |  |  |  |
|  | Power consumption/ Standby power operating [ $W$ ] Note 9 ) | Basic | 11/7 |  | 28/15 |  | 34/13 | 36/13 |
|  |  | Compact | 8/7 |  | 22/12 |  | - | - |
|  | Max. instantaneous power consumption [W] ${ }^{\text {Nite }}$ 10) | Basic | 19 |  | 51 |  | 57 | 61 |
|  |  | Compact | 14 |  | 42 |  | - | - |

Note 1) Gripping force should be from 10 to 20 times the workpiece weight. Moving force should be $150 \%$ when releasing the workpiece. Gripping force accuracy should be $\pm 30 \%$ (F.S.) for LEHZ10/16, $\pm 25 \%$ (F.S.) for LEHZ20/25 and $\pm 20 \%$ (F.S.) for LEHZ32/40. Gripping with heavy attachment and fast pushing speed, may not reach the product specification. In this case, decrease the weight and lower the pushing speed.
Note 2) Pushing speed should be set within the range during pushing (gripping) operation. Otherwise, it may cause malfunction. The open/close speed and pushing speed are for both fingers. The speed for one finger is half this value.
Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to $10 \%$ for each 5 m . (At 15 m : Reduced by up to $20 \%$ )
Note 4) Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position.
Note 5) There will be no influence of backlash during pushing (gripping) operation. Make the stroke longer for the amount of backlash when opening.
Note 6) Repeatability means the variation of the gripping position (workpiece position) when the gripping operation is repeatedly performed by the same sequence for the same workpiece.
Note 7) A reference value for correcting an error in reciprocal operation which occurs during the positioning operation
Note 8) Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Note 9) The power consumption (including the controller) is for when the gripper is operating.
The standby power consumption when operating is for when the gripper is stopped in the set position during operation,
Note 10) The maximum instantaneous power consumption (including the controller) is for when the gripper is operating. This value can be used for the selection of the power supply.
How to Mount
a) When using the thread on the side of the body

b) When using the thread on the mounting plate


SSMC
c) When using the thread on the back of the body


Construction
LEHZ Series


Component Parts

| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1}$ | Body | Aluminum alloy | Anodized |
| $\mathbf{2}$ | Motor plate | Aluminum alloy | Anodized |
| $\mathbf{3}$ | Guide ring | Aluminum alloy |  |
| $\mathbf{4}$ | Slide nut | Stainless steel | Heat treatment + Special treatment |
| $\mathbf{5}$ | Slide bolt | Stainless steel | Heat treatment + Special treatment |
| $\mathbf{6}$ | Needle roller | High carbon chromium bearing steel |  |
| $\mathbf{7}$ | Needle roller | High carbon chromium bearing steel |  |
| $\mathbf{8}$ | Finger assembly | - |  |
| $\mathbf{9}$ | Lever | Special stainless steel |  |
| $\mathbf{1 0}$ | Step motor (Servo/24 VDC) | - |  |

## Replacement Parts (8) Finger Assembly

|  | Basic (Nil) | Side tapped mounting (A) | Through-hole in open/ <br> close direction (B) | Flat fingers (C) |
| :---: | :---: | :---: | :---: | :---: |
| Size | MHZ |  |  |  |
| $\mathbf{n n}$ |  |  |  | MHZ-AA1002-2 |

## LEHZ Series

## Dimensions

## LEHZ10(L)K2-4

| $[\mathrm{mm}]$ |  |  |
| :---: | :---: | :---: |
| Model | L | (Li) |
| LEHZ10K2-4 $\square$ | 103.8 | $(59.7)$ |
| LEHZ10LK2-4 $\square$ | 87.2 | $(43.1)$ |



When closed: $11^{+0.2}$ When opened: $15_{-0.5}^{+0.2}$ (Finger operating range: 11 to 16) Note 1)

Note 1) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.
Note 2) Secure the motor cable so that the cable is not repeatedly bent.

## LEHZ16(L)K2-6



Dimensions
LEHZ20(L)K2-10


Note 1) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.
Note 2) Secure the motor cable so that the cable is not repeatedly bent.

## LEHZ25(L)K2-14



Note 1) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.
Note 2) Secure the motor cable so that the cable is not repeatedly bent.

## LEHZ Series

Step Motor (Servo/24 VDC)

## Dimensions

## LEHZ32K2-22





Note 1) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.
Note 2) Secure the motor cable so that the cable is not repeatedly bent.

## LEHZ40K2-30





Note 1) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.
Note 2) Secure the motor cable so that the cable is not repeatedly bent.

## LEHZ Series

Finger Options

Side Tapped Mounting (A)

[mm]

| Model | A | B | C | MM |
| :--- | :---: | :---: | :---: | :---: |
| LEHZ10(L)K2-4A $\square$ | 3 | 5.7 | 2 | M2.5 $\times 0.45$ |
| LEHZ16(L)K2-6A $\square$ | 4 | 7 | 2.5 | M3 $\times 0.5$ |
| LEHZ20(L)K2-10A $\square$ | 5 | 9 | 4 | $\mathrm{M} 4 \times 0.7$ |
| LEHZ25(L)K2-14A $\square$ | 6 | 12 | 5 | $\mathrm{M} 5 \times 0.8$ |
| LEHZ32K2-22A $\square$ | 7 | 14 | 6 | $\mathrm{M} 6 \times 1$ |
| LEHZ40K2-30A $\square$ | 9 | $\mathbf{1 7}$ | $\mathbf{7}$ | M8 $\times 1.25$ |

Through-hole in Open/Close Direction (B)


* Mounting hole for
attachment

| Model | A | B | H |
| :--- | :---: | :---: | :---: |
| LEHZ10(L)K2-4B $\square$ | 3 | 5.7 | 2.9 |
| LEHZ16(L)K2-6B $\square$ | 4 | 7 | 3.4 |
| LEHZ20(L)K2-10B $\square$ | 5 | 9 | 4.5 |
| LEHZ25(L)K2-14B $\square$ | 6 | 12 | 5.5 |
| LEHZ32K2-22B $\square$ | 7 | 14 | 6.6 |
| LEHZ40K2-30B $\square$ | 9 | 17 | 9 |

## Flat Fingers (C)



| Model | A | B | C | D | F | G |  | J | K | MM | L | W | Weight [g] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | When opened | When closed |  |  |  |  |  |  |
| LEHZ10K2-4C $\square$ | 2.45 | 6 | 5.2 | 10.9 | 2 | $5.4-0.2$ | $1.4{ }_{-0.2}^{0}$ | 4.45 | $2 \mathrm{H} 9^{+0.025}$ | M2.5 x 0.45 | 5 | $5_{-0.05}^{0}$ | 165 |
| LEHZ10LK2-4C $\square$ |  |  |  |  |  |  |  |  |  |  |  |  | 135 |
| LEHZ16K2-6C $\square$ | 3.05 | 8 | 8.3 | 14.1 | 2.5 | $7.4{ }_{-0.2}^{0}$ | $1.4{ }_{-0.2}^{0}$ | 5.8 | $2.5 \mathrm{H} 9^{+0.025}$ | M3 $\times 0.5$ | 6 | $8{ }_{-0.05}^{0}$ | 220 |
| LEHZ16LK2-6C $\square$ |  |  |  |  |  |  |  |  |  |  |  |  | 190 |
| LEHZ20K2-10C $\square$ | 3.95 | 10 | 10.5 | 17.9 | 3 | $11.6{ }_{-0.2}^{0}$ | $1.6{ }_{-0.2}^{0}$ | 7.45 | $3 \mathrm{H} 9^{+0.025}$ | M4 x 0.7 | 8 | $10_{-0.05}^{0}$ | 430 |
| LEHZ20LK2-10C $\square$ |  |  |  |  |  |  |  |  |  |  |  |  | 365 |
| LEHZ25K2-14C $\square$ | 4.9 | 12 | 13.1 | 21.8 | 4 | 16-0.2 | $2_{-0.2}^{0}$ | 8.9 | $4 \mathrm{H9}{ }^{+0.030}$ | M5 x 0.8 | 10 | 12-0.05 | 575 |
| LEHZ25LK2-14C $\square$ |  |  |  |  |  |  |  |  |  |  |  |  | 510 |
| LEHZ32K2-22C $\square$ | 7.3 | 20 | 18 | 34.6 | 5 | 25-0.2 | $3_{-0.2}^{0}$ | 14.8 | $5 \mathrm{H9}^{+0.030}$ | M6x 1 | 12 | 15-0.05 | 1145 |
| LEHZ40K2-30C $\square$ | 8.7 | 24 | 22 | 41.4 | 6 | $33_{-0.2}^{0}$ | $3_{-0.2}^{0}$ | 17.7 | $6 \mathrm{H9}{ }_{0}^{+0.030}$ | M8 $\times 1.25$ | 16 | $18-0.05$ | 1820 |

Electric Gripper 2-Finger Type/With Dust Cover LEHZJ Series
Model Selection

## LEHZJ Series $>$ Pages 452, 453-1

## Selection Procedure

Step 1 Check the gripping force.
Calculate the
Check the

conditions. $\rightarrow \quad$\begin{tabular}{c}
Select the model from <br>
gripping force graph.

$\quad$

Select the <br>
pushing speed.
\end{tabular}

## Example

Workpiece mass: 0.1 kg

## Guidelines for the selection of the gripper

 with respect to workpiece mass- Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 10 to 20 times Note) the workpiece weight, or more.
Note) For details, refer to the calculation of required gripping force.
- If high acceleration or impact forces are encountered during motion, a further margin of safety should be considered.
Example) When it is desired to set the gripping force at 20 times or more above the workpiece weight.


## Required gripping force

$=0.1 \mathrm{~kg} \times 20 \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \approx 19.6 \mathrm{~N}$ or more

## Pushing force: 70\%

Pushing force is one of the values of step data that is input into the controller.
Gripping point distance: 30 mm

Pushing speed: $30 \mathrm{~mm} / \mathrm{sec}$

## Calculation of required gripping force



When gripping a workpiece as in the figure to the left, and with the following definitions,

F: Gripping force ( N )
$\mu$ : Coefficient of friction between the attachments and the workpiece
m : Workpiece mass (kg)
g : Gravitational acceleration ( $=9.8 \mathrm{~m} / \mathrm{s}^{2}$ ) mg : Workpiece weight ( N )
the conditions under which the workpiece will not drop are
$\mathbf{2} \times \mu \mathrm{F}>\mathrm{mg}$
$\stackrel{2}{\overline{4}}$
and therefore, $\mathbf{F}>\frac{\mathrm{mg}}{2 \times \mu}$
With "a" representing the margin,
" $F$ " is determined by the following formula

$$
F=\frac{m g}{2 \times \mu} \times a
$$

"Gripping force at least 10 to 20 times the workpiece weight"

- The " 10 to 20 times or more of the workpiece weight" recommended by SMC is calculated with a margin of " a " $=4$, which allows for impacts that occur during normal transportation, etc.

<Reference> Coefficient of friction $\mu$ (depends on the operating environment, contact pressure, etc.)
Coefficient of friction $\mu$ Attachment - Material of workpieces (guideline)

| 0.1 | Metal (surface roughness Rz3.2 or less) |
| :---: | :---: |
| 0.2 | Metal |
| 0.2 or more | Rubber, Resin, etc. |

[^0] a further margin should be considered.

## Selection Procedure

Step 1 Check the gripping force: LEHZJ Series

- Indication of gripping force

The gripping force shown in the graphs below is expressed as
" $F$ ", which is the gripping force of one finger, when both fingers and attachments are in full contact with the workpiece as shown in the figure below.

External Gripping State


Basic

* Pushing force is one of the values of

LEHZJ10


## LEHZJ16



- Set the workpiece gripping point "L" so that it is within the range shown in the figure below.

Internal Gripping State



## LEHZJ16L



## LEHZJ Series

## Selection Procedure

Step 1 Check the gripping force: LEHZJ Series


LEHZJ20


## LEHZJ25



Pushing force is one of the values of step data that is input into the controller. Compact LEHZJ20L


LEHZJ25L


## Selection of Pushing Speed

- Set the [Pushing force] and [Trigger level] within the range shown in the figure below.

Basic


## Compact

## LEHZJ10L, LEHZJ16L



LEHZJ20L, LEHZJ25L


## Selection Procedure

Step 2 Check the gripping point and overhang: LEHZJ Series

- Decide the gripping position of the workpiece so that the amount of overhang " H " stays within the range shown in the figure below.
- If the gripping position is out of the limit, it may shorten the life of the electric gripper.

* Pushing force is one of the values of

Basic step data that is input into the controller.

LEHZJ10


## LEHZJ16



LEHZJ20


Internal Gripping State


* Pushing force is one of the values of step data that is input into the controller.
Compact
LEHZJ10L



## LEHZJ16L



LEHZJ20L


## LEHZJ Series

## Selection Procedure

Step 2 Check the gripping point and overhang: LEHZJ Series

## * Pushing force is one of the values of step data that is input into the controller.

LEHZJ25


* Pushing force is one of the values of

Compact step data that is input into the controller.

LEHZJ25L


## Selection Procedure

Step 3 Check the external force on fingers: LEHZJ Series


Fv: Allowable vertical load


Mp: Pitch moment


My: Yaw moment



Mr: Roll moment

H, L: Distance to the point at which the load is applied [mm]

| Model | Allowable vertical load | Static allowable moment |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  |  | Pitch moment: Mp [N•m] | Yaw moment: My [N•m] | Roll moment: Mr [N•m] |
| LEHZJ10(L)K2-4 |  | 0.26 | 0.26 | 0.53 |
| LEHZJ16(L)K2-6 | 98 | 0.68 | 0.68 | 1.36 |
| LEHZJ20(L)K2-10 | 147 | 1.32 | 1.32 | 2.65 |
| LEHZJ25(L)K2-14 | 255 | 1.94 | 1.94 | 3.88 |

Note) Values for load in the table indicate static values.

| Calculation of allowable external force (when moment load is applied) | Calculation example |
| :---: | :---: |
| $\text { Allowable load } \mathrm{F}[\mathrm{~N}]=\frac{\mathbf{M} \text { (Static allowable moment) }[\mathrm{N} \cdot \mathrm{~m}]}{\mathbf{L \times 1 0 ^ { - 3 }}}$ | When a static load of $f=10 \mathrm{~N}$ is operating, which applies pitch moment to point $\mathrm{L}=30 \mathrm{~mm}$ from the LEHZJ16K2-6 guide. <br> Therefore, it can be used. $\begin{aligned} & \text { Allowable load } \mathrm{F}=\frac{0.68}{30 \times 10^{-3}} \\ &=22.7[\mathrm{~N}] \\ & \text { Load } \mathrm{f}=10[\mathrm{~N}]<22.7[\mathrm{~N}] \end{aligned}$ |

# Electric Gripper 2-Finger Type/ With Dust Cover 



## LEC $\square$ Series


1 Dust cover

| $\mathbf{J}$ | With dust cover |
| :---: | :---: |


| 2 Size |
| :---: |
| 10 |
| 16 |
| 20 |
| 25 |

3 Motor size

| Nil | Basic |
| :---: | :---: |
| L | Compact |

4 Lead

| $K$ | Basic |
| :---: | :---: |

5 2-finger type

| Stroke/both sides | Stroke |
| :---: | :---: |
| $\mathbf{4}$ | 10 |
| $\mathbf{6}$ | 16 |
| $\mathbf{1 0}$ | 20 |
| $\mathbf{1 4}$ | 25 |

7 Dust cover type

| Nil | Chloroprene rubber (CR) |
| :---: | :---: |
| $\mathbf{K}$ | Fluororubber (FKM) |
| $\mathbf{S}$ | Silicone rubber (Si) |

(9) Actuator cable type/length*2

| Standard cable [m] |  | Robotic cable |  | [m] |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Nil | None | R1 | 1.5 | RA | 10*1 |
| S1 | 1.5 | R3 | 3 | RB | 15*1 |
| S3 | 3 | R5 | 5 | RC | 20*1 |
| S5 | 5 | R8 | 8*1 |  |  |


| 6 N $\square$ <br> 1 $\square$ |  |  |
| :---: | :---: | :---: |
| 101112 |  |  |
| 10 Controller/Driver type*3 |  |  |
| Nil | Without controller/driver |  |
| 6N | LECP6 <br> (Step data input type) | NPN |
| 6P |  | PNP |
| 1N | LECP1 (Programless type) | NPN |
| 1P |  | PNP |
| MJ | LECPMJ*4 (CC-Link direct input type) | - |
| AN | LECPA*5 <br> (Pulse input type) | NPN |
| AP |  | PNP |

11 I/O cable length*6, Communication plug

| Nil | Without cable <br> (Without communication plug connector) ${ }^{* 8}$ <br> $\mathbf{1}$$\quad 1.5 \mathrm{~m}$ |
| :---: | :---: |
| $\mathbf{3}$ | $3 \mathrm{~m}^{* 7}$ |
| $\mathbf{5}$ | $5 \mathrm{~m}^{* 7}$ |
| $\mathbf{S}$ | Straight type communication plug connector*8 $* 8$ |
| $\mathbf{T}$ | T-branch type communication plug connector*8 |


$J X C \square$ Series (For details, refer to page 453-1.)
(10) Controller

| Nil | Without controller |
| :---: | :---: |
| C $\square 1$ 10] | With controller |


*1 Produced upon receipt of order (Robotic cable only)
*2 The standard cable should only be used on fixed parts. For use on moving parts, select the robotic cable.
*3 For details about controller/driver and compatible motor, refer to the compatible controller/driver on the next page.
*4 Not applicable to CE.
*5 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- $\square$ ) on page 596 separately.
*6 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 568 (For LECP6), page 582 (For LECP1) or page 596 (For LECPA) if I/O cable is required.

## $\triangle$ Caution

## [CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEH series and the controller LEC/JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) CC-Link direct input type (LECPMJ) is not CE-compliant.

## [UL-compliant products]

When conformity to UL is required, the electric actuator and controller/ driver should be used with a UL1310 Class 2 power supply.
*7 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.
*8 For the LECPMJ, only "Nil", "S" and "T" are selectable since I/O cable is not included.
*9 DIN rail is not included. Order it separately.
*10 Select "Nil" for anything other than DeviceNet ${ }^{\text {TM }}$.

## The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.

## <Check the following before use.>

(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).


* Refer to the Operation Manual for using the products. Please download it via our website, https://www.smcworld.com


## LEHZJ Series

Step Motor (Servo/24 VDC)

Compatible Controller/Driver
$L E C \square$ Series

| Type | Step data input type | CC-Link direct input type | Programless type | Pulse input type |
| :---: | :---: | :---: | :---: | :---: |
| Series | LECP6 | LECPMJ | LECP1 | LECPA |
| Features | Value (Step data) input Standard controller | CC-Link direct input | Capable of setting up operation (step data) without using a PC or teaching box | Operation by pulse signals |
| Compatible motor | Step motor (Servo/24 VDC) |  |  |  |
| Maximum number of step data | 64 points |  | 14 points | - |
| Power supply voltage | 24 VDC |  |  |  |
| Reference page | Page 560 | Page 600 | Page 576 | Page 590 |

JXC $\square$ Series

| Type | EtherCAT ${ }^{( }$ <br> direct input type | EtherNet//PTM direct input type | PROFINET <br> direct input type | DeviceNet ${ }^{\text {TM }}$ direct input type | IO-Link direct input type |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Series | JXCE1 | JXC91 | JXCP1 | JXCD1 | JXCL1 |
| Features | EtherCAT ${ }^{\circledR}$ direct input | EtherNet/IPTM direct input | PROFINET direct input | DeviceNet ${ }^{\text {TM }}$ direct input | IO-Link direct input |
| Compatible motor | Step motor (Servo/24 VDC) |  |  |  |  |
| Maximum number of step data | 64 points |  |  |  |  |
| Power supply voltage | 24 VDC |  |  |  |  |
| Reference page | Page 603-5 |  |  |  |  |

Specifications


| Model |  |  | LEHZJ10 | LEHZJ16 | LEHZJ20 | LEHZJ25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Open and close stroke/both sides [mm] |  | 4 | 6 | 10 | 14 |
|  | Lead [mm] |  | $\begin{aligned} & 251 / 73 \\ & (3.438) \end{aligned}$ | $\begin{aligned} & 249 / 77 \\ & (3.234) \end{aligned}$ | $\begin{aligned} & 246 / 53 \\ & (4.642) \end{aligned}$ | $\begin{aligned} & 243 / 48 \\ & (5.063) \end{aligned}$ |
|  | Gripping force <br> [N] Note 1) Note 3) | Basic | 6 to 14 |  | 16 to 40 |  |
|  |  | Compact | 3 to 6 | 4 to 8 | 11 to 28 |  |
|  |  |  | 5 to 80/5 to 50 |  | 5 to 10 | to 50 |
|  | Drive method |  | Slide screw + Slide cam |  |  |  |
|  | Finger guide type |  | Linear guide (No circulation) |  |  |  |
|  | Repeated length measurement accuracy [mm] ${ }^{\text {Note 4) }}$ |  | $\pm 0.05$ |  |  |  |
|  | Finger backlash/ one side [mm] Note 5) |  | 0.25 or less |  |  |  |
|  | Repeatability [mm] Note 6) |  | $\pm 0.02$ |  |  |  |
|  | Positioning repeatability/one side [mm] |  | $\pm 0.05$ |  |  |  |
|  | Lost motion/one side [mm] ${ }^{\text {Note 7) }}$ |  | 0.25 or less |  |  |  |
|  | Impact/Vibration resistance [m/s²] Note 8) |  | 150/30 |  |  |  |
|  | Max. operating frequency [C.P.M] |  | 60 |  |  |  |
|  | Operating temperature range [ ${ }^{\circ} \mathrm{C}$ ] |  | 5 to 40 |  |  |  |
|  | Operating humidity range [\%RH] |  | 90 or less (No condensation) |  |  |  |
|  | Weight [g] | Basic | 170 | 230 | 440 | 610 |
|  |  | Compact | 140 | 200 | 375 | 545 |
|  | Motor size |  | $\square 20$ |  | $\square 28$ |  |
|  | Motor type |  | Step motor (Servo/24 VDC) |  |  |  |
|  | Encoder |  | Incremental A/B phase (800 pulse/rotation) |  |  |  |
|  | Rated voltage [V] |  | 24 VDC $\pm 10 \%$ |  |  |  |
|  | Power consumption/ Standby power consumption whenoperating [W] Note 9) | Basic | 11/7 |  | 28/15 |  |
|  |  | Compact | 8/7 |  | 22/12 |  |
|  | Max. instantaneous power consumption [W] ${ }^{\text {Note } 10)}$ | Basic | 19 |  | 51 |  |
|  |  | Compact | 14 |  | 42 |  |

Note 1) Gripping force should be from 10 to 20 times the workpiece weight. Moving force should be $150 \%$ when releasing the workpiece. Gripping force accuracy should be $\pm 30 \%$ (F.S.) for LEHZJ10/16 and $\pm 25 \%$ (F.S.) for LEHZJ20/25. Gripping with heavy attachment and fast pushing speed, may not reach the product specification. In this case, decrease the weight and lower the pushing speed.
Note 2) Pushing speed should be set within the range during pushing (gripping) operation. Otherwise, it may cause malfunction. The open/close speed and pushing speed are for both fingers. The speed for one finger is half this value.
Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to $10 \%$ for each 5 m . (At 15 m : Reduced by up to 20\%)
Note 4) Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position.
Note 5) There will be no influence of backlash during pushing (gripping) operation. Make the stroke longer for the amount of backlash when opening. Note 6) Repeatability means the variation of the gripping position (workpiece position) when the gripping operation is repeatedly performed by the same sequence for the same workpiece.
Note 7) A reference value for correcting an error in reciprocal operation which occurs during the positioning operation.
Note 8) Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Note 9) The power consumption (including the controller) is for when the gripper is operating.
The standby power consumption when operating is for when the gripper is stopped in the set position during operation, including the energy saving mode when gripping.

## How to Mount

Note 10) The maximum instantaneous power consumption (including the controller) is for when the gripper is operating. This value can be used for the selection of the power supply.
a) When using the thread on the side of the body

Foreign matter protection seal (included)

* Refer to the operation manual for details.
b) When using the thread on the mounting plate

c) When using the thread on the back of the body


Construction
LEHZJ Series


Component Parts

| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1}$ | Body | Aluminum alloy | Anodized |
| $\mathbf{2}$ | Motor plate | Aluminum alloy | Anodized |
| $\mathbf{3}$ | Guide ring | Aluminum alloy |  |
| 4 | Slide nut | Stainless steel | Heat treatment + Special treatment |
| $\mathbf{5}$ | Slide bolt | Stainless steel | Heat treatment + Special treatment |
| $\mathbf{6}$ | Needle roller | High carbon chromium bearing steel |  |
| $\mathbf{7}$ | Needle roller | High carbon chromium bearing steel |  |
| $\mathbf{8}$ | Body plate | Aluminum alloy | Anodized |
|  |  | CR | Chloroprene rubber |
| $\mathbf{9}$ | Dust cover | FKM | Fluororubber |
|  |  | Si | Silicone rubber |
| $\mathbf{1 0}$ | Finger assembly | - | Silicone rubber |
| $\mathbf{1 1}$ | Encoder dust cover | Si |  |
| $\mathbf{1 2}$ | Lever | Special stainless steel |  |
| $\mathbf{1 3}$ | Step motor (Servo/24 VDC) | - |  |

Replacement Parts

| No. | Description |  | LEHZJ10 | LEHZJ16 | LEHZJ20 | LEHZJ25 |  |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{9} \mathbf{9}$ | Dust cover | Material | CR | MHZJ2-J10 | MHZJ2-J16 | MHZJ2-J20 | MHZJ2-J25 |
|  |  |  | MKM | MHZJ2-J10F | MHZJ2-J16F | MHZJ2-J20F | MHZJ2-J25F |
|  |  |  | Si | MHZJ2-J10S | MHZJ2-J16S | MHZJ2-J20S | MHZJ2-J25S |
| $\mathbf{1 0}$ | Finger assembly |  | MHZJ-AA1002 | MHZJ-AA1602 | MHZJ-AA2002 | MHZJ-AA2502 |  |

[^1]
## LEHZJ Series

Step Motor (Servo/24 VDC)

## Dimensions

## LEHZJ10(L)K2-4

| $[\mathrm{mm}]$ |  |  |
| :---: | :---: | :---: |
| Model | L | $\mathbf{( L} 1)$ |
| LEHZJ10K2-4 $\square$ | 109.8 | $(62.7)$ |
| LEHZJ10LK2-4 $\square$ | 93.2 | $(46.1)$ |



## LEHZJ16(L)K2-6

| $[\mathrm{mm}]$ |  |  |
| :--- | :---: | :---: |
| Model | $\mathbf{L}$ | $\left(\mathbf{L}_{1}\right)$ |
| LEHZJ16K2-6 $\square$ | 118.6 | $(62.7)$ |
| LEHZJ16LK2-6 | 102 | $(46.1)$ |



Dimensions
LEHZJ20(L)K2-10

|  | $[\mathrm{mm}]$ |  |
| :---: | :---: | :---: |
| Model | $\mathbf{L}$ | $\left(\mathbf{L}_{1}\right)$ |
| LEHZJ20K2-10 $\square$ | 135.7 | $(64.8)$ |
| LEHZJ20LK2-10 $\square$ | 121.7 | $(50.8)$ |



LEHZJ25(L)K2-14

| $[\mathrm{mm}]$ |  |  |
| :--- | :---: | :---: |
| Model | $\mathbf{L}$ | (L1) |
| LEHZJ25K2-14 $\square$ | 146.7 | $(64.8)$ |
| LEHZJ25LK2-14 $\square$ | 132.7 | $(50.8)$ |



## LEHF Series $>$ Pages 462, 463-1

## Selection Procedure

## Step 1 Check the gripping force.

| Check the |
| :---: |
| conditions. |$\quad$| Calculate the |
| :---: |
| Select the model from |
| gripping force graph. |$\quad$| Select the |
| :---: |
| pushing speed. |

## Example

Workpiece mass: 0.1 kg

## Guidelines for the selection of the gripper

 with respect to workpiece mass- Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 10 to 20 times Note) the workpiece weight, or more.
Note) For details, refer to the model selection illustration.
- If high acceleration or impact forces are encountered during motion, a further margin of safety should be considered.
Example) When it is desired to set the gripping force at 20 times or more above the workpiece weight.
Required gripping force
$=0.1 \mathrm{~kg} \times 20 \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \approx 19.6 \mathrm{~N}$ or more

Pushing force: 100\%

Gripping point distance: 30 mm

Pushing speed: $20 \mathrm{~mm} / \mathrm{sec}$

## Calculation of required gripping force



When gripping a workpiece as in the figure to the left, and with the following definitions,

F : Gripping force ( N )
$\mu$ : Coefficient of friction between the attachments and the workpiece
m : Workpiece mass (kg)
g : Gravitational acceleration ( $=9.8 \mathrm{~m} / \mathrm{s}^{2}$ )
mg : Workpiece weight ( N )
the conditions under which the workpiece will not drop are
$2 \times \mu \mathrm{F}>\mathrm{mg}$
$\overline{\overline{4}}$
and therefore, $\mathbf{F}>\frac{\mathbf{m g}}{2 \times \mu}$
With "a" representing the margin, " $F$ " is determined by the following formula:

$$
\mathbf{F}=\frac{\mathrm{mg}}{2 \mathbf{x} \mu} \times a
$$

"Gripping force at least $\mathbf{1 0}$ to $\mathbf{2 0}$ times the workpiece weight"

- The "10 to 20 times or more of the workpiece weight" recommended by SMC is calculated with a margin of "a" $=4$, which allows for impacts that occur during normal transportation, etc.

<Reference> Coefficient of friction $\mu$ (depends on the
operating environment, contact pressure, etc.)

| Coefficient of friction $\mu$ | Attachment - Material of workpieces (guideline) |
| :---: | :---: |
| 0.1 | Metal (surface roughness Rz3.2 or less) |
| 0.2 | Metal |
| 0.2 or more | Rubber, Resin, etc. |

Note) - Even in cases where the coefficient of friction is greater than $\mu=0.2$, for reasons of safety, select a gripping force which is at least 10 to 20 times greater than the workpiece weight, as recommended by SMC.

- If high acceleration or impact forces are encountered during motion, a further margin should be considered.


## Selection Procedure

Step 1 Check the gripping force: LEHF Series

- Indication of gripping force

Gripping force shown in the graphs below is expressed as " $F$ ", which is the gripping force of one finger, when both fingers and attachments are in full contact with the workpiece as shown in the figure below.

- Set the workpiece gripping point "L" so that it is within the range shown in the figure below.


Internal Gripping State


## LEHF10



LEHF20


## LEHF32



## LEHF40



## Selection of Pushing Speed

- Set the [Pushing force] and the [Trigger LV] within the range shown in the figure below.


[^2]
## LEHF Series

## Selection Procedure

Step 2 Check the gripping point and overhang: LEHF Series

- Decide the gripping position of the workpiece so that the amount of overhang " H " stays within the range shown in the figure below.
- If the gripping position is out of the limit, it may shorten the life of the electric gripper.

External Gripping State


## LEHF10



LEHF32


Internal Gripping State


LEHF20


## LEHF40



* Pushing force is one of the values of step data that is input into the controller.


## Selection Procedure

Step 3 Check the external force on fingers: LEHF Series


H, L: Distance to the point at which the load is applied [mm]

| Model | Allowable vertical load <br> Fv [N] | Static allowable moment |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Pitch moment: Mp [N•m] | Yaw moment: My [N•m] | Roll moment: Mr [N•m] |
| LEHF10K2- $\square$ | 58 | 0.26 | 0.26 | 0.53 |
| LEHF20K2- $\square$ | 98 | 0.68 | 0.68 | 1.4 |
| LEHF32K2- $\square$ | 176 | 1.4 | 1.4 | 2.8 |
| LEHF40K2- $\square$ | 294 | 2 | 2 | 4 |

Note) Values for load in the table indicate static values.

| Calculation of allowable external force (when moment load is applied) | Calculation example |
| :---: | :---: |
| $\text { Allowable load } \mathrm{F}[\mathrm{~N}]=\frac{\mathbf{M} \text { (Static allowable moment) }[\mathrm{N} \cdot \mathrm{~m}]}{\mathrm{L} \times 10^{-3 *}}$ | When a static load of $f=10 \mathrm{~N}$ is operating, which applies pitch moment to point $\mathrm{L}=30 \mathrm{~mm}$ from the LEHF20K2- $\square$ guide. <br> Therefore, it can be used. $\begin{aligned} & \text { Allowable load } F=\frac{0.68}{30 \times 10^{-3}} \\ &=22.7[\mathrm{~N}] \\ & \text { Load } f=10[\mathrm{~N}]<22.7[\mathrm{~N}] \end{aligned}$ |

# Electric Gripper 2-Finger Type 

LEHF 10 K2-16
(3) 2-finger type


##  <br> LEC $\square$ Series




K

| 1 Size |
| :---: |
| 10 |
| 20 |
| 32 |
| 40 |

Motor cable entry


6 Actuator cable type/length*2
Standard cable [m] Robotic cable
Robotic cable

| R1 | 1.5 | RA | $\left.10^{* 1}\right]$ |  |
| :--- | :--- | :--- | :--- | :---: |
| R3 | 3 | RB | $15^{* 1}$ |  |
| R5 | 5 | RC | $20^{* 1}$ |  |
| R8 | $8^{* 1}$ |  |  |  |



7 Controller/Driver type*3

| Nil | Without controller/driver |  |
| :---: | :---: | :---: |
| 6N | L | NPN |
| 6P | (Step data input type) | PNP |
| 1N | LECP1 <br> (Programless type) | NPN |
| 1P |  | PNP |
| MJ | LECPMJ*4 <br> (CC-Link direct input type) | - |
| AN | LECPA*5 <br> (Pulse input type) | NPN |
| AP |  | PNP |

8 I/O cable length $* 6$, Communication plug

| $\mathbf{N i l}$ | Without cable <br> (Without communication plug connector)*8 |
| :---: | :---: |
| $\mathbf{1}$ | 1.5 m |
| $\mathbf{3}$ | $3 \mathrm{~m}^{* 7}$ |
| $\mathbf{5}$ | $5 \mathrm{~m}^{* 7}$ |
| $\mathbf{S}$ | Straight type communication plug connector*8 |
| $\mathbf{T}$ | T-branch type communication plug connector*8 |


$J X C \square$ Series (For details, refer to page 463-1.)
(7) Controller


| $\mathbf{E}$ | EtherCAT $^{\circledR}$ |
| :---: | :---: |
| $\mathbf{9}$ | EtherNet/IP $^{\text {TM }}$ |
| $\mathbf{P}$ | PROFINET $^{\text {PRO }}$ |
| $\mathbf{D}$ | DeviceNet $^{\text {TM }}$ |
| $\mathbf{L}$ | IO-Link |

## - Mounting



Communication plug connector
for DeviceNet ${ }^{\text {M }}$ *10

| $\mathbf{N i l}$ | Without plug connector |
| :---: | :---: |
| $\mathbf{S}$ | Straight type |
| $\mathbf{T}$ | T-branch type |

-For single axis
*1 Produced upon receipt of order (Robotic cable only)
*2 The standard cable should only be used on fixed parts. For use on moving parts, select the robotic cable.
*3 For details about controller/driver and compatible motor, refer to the compatible controller/driver on the next page.
*4 Not applicable to CE.
*5 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- $\square$ ) on page 596 separately.
*6 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 568 (For LECP6), page 582 (For LECP1) or page 596 (For LECPA) if I/O cable is required.

## $\triangle$ Caution

## [CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEH series and the controller LEC/JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) CC-Link direct input type (LECPMJ) is not CE-compliant.

## [UL-compliant products]

When conformity to UL is required, the electric actuator and controller/ driver should be used with a UL1310 Class 2 power supply.
*7 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.
*8 For the LECPMJ, only "Nil", "S" and "T" are selectable since I/O cable is not included.
*9 DIN rail is not included. Order it separately.
*10 Select "Nil" for anything other than DeviceNet ${ }^{\text {TM }}$.

## The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.

## <Check the following before use.>

(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).


* Refer to the Operation Manual for using the products. Please download it via our website, https://www.smcworld.com


## LEHF Series

Step Motor (Servo/24 VDC)

## Compatible Controller/Driver

## LEC $\square$ Series

| Type | Step data input type | CC-Link direct input type | Programless type | Pulse input type |
| :---: | :---: | :---: | :---: | :---: |
| Series | LECP6 | LECPMJ | LECP1 | LECPA |
| Features | Value (Step data) input Standard controller | CC-Link direct input | Capable of setting up operation (step data) without using a PC or teaching box | Operation by pulse signals |
| Compatible motor | Step motor (Servo/24 VDC) |  |  |  |
| Maximum number of step data | 64 points |  | 14 points | - |
| Power supply voltage | 24 VDC |  |  |  |
| Reference page | Page 560 | Page 600 | Page 576 | Page 590 |

## JXC $\square$ Series

| Type | EtherCAT ${ }^{\circledR}$ <br> direct input type | EtherNet//PTM direct input type | PROFINET <br> direct input type | DeviceNet ${ }^{\text {TM }}$ direct input type | IO-Link direct input type |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Series | JXCE1 | JXC91 | JXCP1 | JXCD1 | JXCL1 |
| Features | EtherCAT ${ }^{\circledR}$ direct input | EtherNet/IP ${ }^{\text {TM }}$ direct input | PROFINET direct input | DeviceNet ${ }^{\text {TM }}$ direct input | IO-Link direct input |
| Compatible motor | Step motor (Servo/24 VDC) |  |  |  |  |
| Maximum number of step data | 64 points |  |  |  |  |
| Power supply voltage | 24 VDC |  |  |  |  |
| Reference page | Page 603-5 |  |  |  |  |

Specifications


## How to Mount

| Model |  |  | LEHF10 | LEHF20 | LEHF32 | LEHF40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Open and close stroke/both sides [mm] | Basic | 16 | 24 | 32 | 40 |
|  |  | Long stroke | 32 | 48 | 64 | 80 |
|  | Lead [mm] |  | $\begin{gathered} 40 / 15 \\ (2.667) \end{gathered}$ | $\begin{gathered} 50 / 15 \\ (3.333) \end{gathered}$ | $\begin{gathered} 70 / 16 \\ (4.375) \end{gathered}$ | $\begin{gathered} 70 / 16 \\ (4.375) \end{gathered}$ |
|  | Gripping force [ N ] Note 1) Note 3) |  | 3 to 7 | 11 to 28 | 48 to 120 | 72 to 180 |
|  | Open and close speed/Pushing speed [mm/s] ${ }^{\text {Notie } 2 / \text { Note } 3)}$ |  | 5 to 80/5 to 20 | 5 to 100/5 to 30 |  |  |
|  | Drive method |  | Slide screw + Belt |  |  |  |
|  | Finger guide type |  | Linear guide (No circulation) |  |  |  |
|  | Repeated length measurement accuracy [mm] ${ }^{\text {Note 4) }}$ |  | $\pm 0.05$ |  |  |  |
|  | Finger backlash/one side [mm] Note 5) |  | 0.5 or less |  |  |  |
|  | Repeatability [mm] Note 6) |  | $\pm 0.05$ |  |  |  |
|  | Positioning repeatability/one side [mm] |  | $\pm 0.1$ |  |  |  |
|  | Lost motion/one side [mm] Note 7) |  | 0.3 or less |  |  |  |
|  | Impact/Vibration resistance [ $\mathrm{m} / \mathrm{s}^{2}$ ] Note 8) |  | 150/30 |  |  |  |
|  | Max. operating frequency [C.P.M] |  | 60 |  |  |  |
|  | Operating temperature range [ ${ }^{\mathrm{C}}$ ] |  | 5 to 40 |  |  |  |
|  | Operating humidity range [\%RH] |  | 90 or less (No condensation) |  |  |  |
|  | Weight [g] | Basic | 340 | 610 | 1625 | 1980 |
|  |  | Long stroke | 370 | 750 | 1970 | 2500 |
|  | Motor size |  | $\square 20$ | $\square 28$ | $\square 42$ |  |
|  | Motor type |  | Step motor (Servo/24 VDC) |  |  |  |
|  | Encoder |  | Incremental A/B phase (800 pulse/rotation) |  |  |  |
|  | Rated voltage [V] |  | 24 VDC $\pm 10 \%$ |  |  |  |
|  | Power consumplionStandby power consumption when operating [W] wede |  | 11/7 | 28/15 | 34/13 | 36/13 |
|  | Max. instantaneous power consumption [W] Note 10) |  | 19 | 51 | 57 | 61 |

Note 1) Gripping force should be from 10 to 20 times the workpiece weight. Moving force should be $150 \%$ when releasing the workpiece. Gripping force accuracy should be $\pm 30 \%$ (F.S.) for LEHF10, $\pm 25 \%$ (F.S.) for LEHF20 and $\pm 20 \%$ (F.S.) for LEHF32/40. Gripping with heavy attachment and fast pushing speed, may not reach the product specification. In this case, decrease the weight and lower the pushing speed.
Note 2) Pushing speed should be set within the range during pushing (gripping) operation. Otherwise, it may cause malfunction. The open/close speed and pushing speed are for both fingers. The speed for one finger is half this value.
Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to $10 \%$ for each 5 m . (At 15 m : Reduced by up to $20 \%$ )
Note 4) Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position.
Note 5) There will be no influence of backlash during pushing (gripping) operation. Make the stroke longer for the amount of backlash when opening.
Note 6) Repeatability means the variation of the gripping position (workpiece position) when the gripping operation is repeatedly performed by the same sequence for the same workpiece.
Note 7) A reference value for correcting an error in reciprocal operation which occurs during the positioning operation
Note 8) Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Note 9) The power consumption (including the controller) is for when the gripper is operating.
The standby power consumption when operating is for when the gripper is stopped in the set position during operation, including the energy saving mode when gripping.
Note 10) The maximum instantaneous power consumption (including the controller) is for when the gripper is operating. This value can be used for the selection of the power supply.
a) When using the thread on the body

b) When using the thread on the mounting plate

## c) When using the thread on the back of the body



Construction
LEHF Series


Component Parts

| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| 1 | Body | Aluminum alloy | Anodized |
| 2 | Side plate A | Aluminum alloy | Anodized |
| 3 | Side plate B | Aluminum alloy | Anodized |
| 4 | Slide shaft | Stainless steel | Heat treatment + Special treatment |
| 5 | Slide bushing | Stainless steel |  |
| 6 | Slide nut | Stainless steel | Heat treatment + Special treatment |
| 7 | Slide nut | Stainless steel | Heat treatment + Special treatment |
| 8 | Fixed plate | Stainless steel |  |
| 9 | Motor plate | Carbon steel |  |
| 10 | Pulley A | Aluminum alloy |  |
| 11 | Pulley B | Aluminum alloy |  |
| 12 | Bearing stopper | NBR |  |
| 13 | Rubber bushing | - |  |
| 14 | Bearing | - |  |
| 15 | Belt | - |  |
| 16 | Flangey | - |  |
| 17 | Finger assembly | - |  |
| 18 | Step motor (Servo/24 VDC) |  |  |

## Dimensions

## LEHF10K2-16: Basic



LEHF10K2-32: Long Stroke


Dimensions


## LEHF20K2-48: Long Stroke



## LEHF Series

Step Motor (Servo/24 VDC)

Dimensions


Note 1) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.
Note 2) Secure the motor cable so that the cable is not repeatedly bent.

## LEHF32K2-64: Long Stroke

 returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.


Note 2) Secure the motor cable so that the cable is not repeatedly bent.

Dimensions
LEHF40K2-40: Basic
 returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.
Note 2) Secure the motor cable so that the cable is not repeatedly bent.

LEHF40K2-80: Long Stroke


## Selection Procedure

## Step Check the gripping force.

\(\left.\begin{array}{c}Check the <br>

conditions.\end{array}\right] \quad\)| Calculate the |
| :---: |
| required gripping force. |$\quad$ Select the model from pripping force graph.

## Example <br> Workpiece mass: 0.1 kg <br> Guidelines for the selection of the gripper with respect to workpiece mass <br> - Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 7 to 13 times Note) the workpiece weight, or more. <br> Note) For details, refer to the calculation of required gripping force. <br> - If high acceleration or impact forces are encountered during motion, a further margin of safety should be considered. <br> Example) When it is desired to set the gripping force at 13 times or more above the workpiece weight. <br> Required gripping force <br> $=0.1 \mathrm{~kg} \times 13 \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \approx 12.7 \mathrm{~N}$ or more

Pushing force: 70\%

## Gripping point distance: 30 mm

## LEHS20



When the LEHS20 is selected.

- A gripping force of 14 N is obtained from the intersection point of gripping point distance $\mathrm{L}=30$ mm and pushing force of $70 \%$.
- Gripping force is 14 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 13 times or more.
"Gripping force at least 7 to 13 times the workpiece weight"
- The " 7 to 13 times or more of the workpiece weight" recommended by SMC is calculated with a margin of "a" $=4$, which allows for impacts that occur during normal transportation, etc.

| When $\mu=0.2$ | When $\mu=0.1$ |
| :---: | :---: |
| $\mathbf{F}=\frac{\mathrm{mg}}{3 \times 0.2} \times 4=6.7 \times \mathrm{mg}$ | $\mathbf{F}=\frac{\mathrm{mg}}{3 \times 0.1} \times 4=13.3 \times \mathrm{mg}$ |
| $\mathbf{7} \times$ Workpiece weight | $13 \times$ Workpiece weight |

With "a" representing the margin,
" $F$ " is determined by the following formula:

$$
\mathbf{F}=\frac{\mathrm{mg}}{3 \times \mu} \times \mathbf{a}
$$

When gripping a workpiece as in the figure to the left, and with the following definitions, F: Gripping force ( N )
$\mu$ : Coefficient of friction between the attachments and the workpiece
m : Workpiece mass (kg)
g : Gravitational acceleration ( $=9.8 \mathrm{~m} / \mathrm{s}^{2}$ )
mg : Workpiece weight ( N )
the conditions under which the workpiece will not drop are
$\frac{3}{} \mathrm{x} \mu \mathrm{F}>\mathrm{mg}$
-Number of fingers
and therefore, $\mathbf{F}>\frac{\mathrm{mg}}{3 \times \mu}$
$13 \times$ Workpiece weight


- Pushing speed is satisfied at the point where 70\% of the pushing force and $30 \mathrm{~mm} / \mathrm{sec}$ of the pushing speed cross.

Note) Confirm the pushing speed range from the
determined pushing force [\%].
<Reference> Coefficient of friction $\mu$ (depends on the operating environment, contact pressure, etc.)

| Coefficient of friction $\mu$ | Attachment - Material of workpieces (guideline) |
| :---: | :---: |
| 0.1 | Metal (surface roughness Rz3.2 or less) |
| 0.2 | Metal |
| 0.2 or more | Rubber, Resin, etc. |

Note) • Even in cases where the coefficient of friction is greater than $\mu=0.2$, for reasons of safety, select a gripping force which is at least 7 to 13 times greater than the workpiece weight, as recommended by SMC.

- If high acceleration or impact forces are encountered during motion, a further margin should be considered.


## LEHS Series

Step Motor (Servo/24 VDC)

## Selection Procedure

## Step Check the gripping force: LEHS Series

- Indication of gripping force

The gripping force shown in the graphs on page 473 is expressed as "F", which is the gripping force of one finger, when three fingers and attachments are in full contact with the workpiece as shown in the figure below.

External Gripping State


L: Gripping point

- Set the workpiece gripping point "L" so that it is within the range shown in the figure below.

Internal Gripping State


F: Gripping force


F: Gripping force

## Selection Procedure

Step Check the gripping force: LEHS Series


LEHS20


## LEHS32



## LEHS40



Compact * Pushing force is one of the values of
Compact step data that is input into the controller.

## LEHS10L



## LEHS20L



## Selection of Pushing Speed

- Set the [Pushing force] and the [Trigger LV] within the range shown in the figure below.


## Basic



## Compact



# Electric Gripper 3-Finger Type 



For details about controller, refer to page 475.

| 1 Size |
| :---: |
| 10 |
| 20 |
| 32 |
| 40 |

2 Motor size

| Nil | Basic |
| :---: | :---: |
| L*1 $^{* 1}$ | Compact |

3 Lead

| $K$ | Basic |
| :---: | :---: |

4 3-finger type | 5 Stroke $[\mathrm{mm}]$ |
| :--- |
| Stroke/diameter |
| $\mathbf{4}$ |
| $\mathbf{6}$ |
| $\mathbf{8}$ |
| $\mathbf{1 2}$ |

Actuator cable type/length*3

| Standard cable [m] |  |  |
| :---: | :---: | :---: |
| Nil | None |  |
| S1 | 1.5 |  |
| S3 | 3 |  |
| S5 | 5 |  |

Robotic cable

| R1 | 1.5 | RA | $10^{* 2}$ |  |
| :--- | :--- | :--- | :--- | :---: |
| R3 | 3 | RB | $15^{* 2}$ |  |
| R5 | 5 | RC | $20^{* 2}$ |  |
| R8 | $8^{* 2}$ |  |  |  |



| Controller/Driver type*4 |  |  |
| :---: | :---: | :---: |
| Nil | Without controller/driver |  |
| 6N | ECP6 | NPN |
| 6P | (Step data input type) | PNP |
| 1N | LECP1 <br> (Programless type) | NPN |
| 1P |  | PNP |
| MJ | LECPMJ*5 (CC-Link direct input type) |  |
| AN | LECPA* ${ }^{*}$ (Pulse input type) | NPN |
| AP |  | PNP |

(9) l/O cable length ${ }^{* 7}$, Communication plug

| Nil | Without cable <br> (Without communication plug connector)*99 |
| :---: | :---: |
| $\mathbf{1}$ | 1.5 m |
| $\mathbf{3}$ | $3 \mathrm{~m}^{* 8}$ |
| $\mathbf{5}$ | $5 \mathrm{~m}^{* 8}$ |
| $\mathbf{S}$ | Straight type communication plug connector*9 |
| $\mathbf{T}$ | T-branch type communication plug connector** |


$J X C \square$ Series (For details, refer to page 475-1.)

## 8 Controller


*1 Size: 10, 20 only
*2 Produced upon receipt of order (Robotic cable only)
*3 The standard cable should only be used on fixed parts.
For use on moving parts, select the robotic cable.
*4 For details about controller/driver and compatible motor, refer to the compatible controller/driver on the next page.
*5 Not applicable to CE.
*6 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- $\square$ ) on page 596 separately.

* 7 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 568 (For LECP6), page 582 (For LECP1) or page 596 (For LECPA) if I/O cable is required.


## $\triangle$ Caution

## [CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEH series and the controller LEC/JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) CC-Link direct input type (LECPMJ) is not CE-compliant.

## [UL-compliant products]

When conformity to UL is required, the electric actuator and controller/ driver should be used with a UL1310 Class 2 power supply.
*8 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.
*9 For the LECPMJ, only "Nil", "S" and "T" are selectable since I/O cable is not included.
*10 DIN rail is not included. Order it separately.
*11 Select "Nil" for anything other than DeviceNet ${ }^{T \mathrm{TM}}$.

## The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.

## <Check the following before use.>

(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).


* Refer to the Operation Manual for using the products. Please download it via our website, https://www.smcworld.com


## LEHS Series

Step Motor (Servo/24 vDC)

## Compatible Controller/Driver

## $L E C \square$ Series

| Type | Step data input type | CC-Link direct input type | Programless type | Pulse input type |
| :---: | :---: | :---: | :---: | :---: |
| Series | LECP6 | LECPMJ | LECP1 | LECPA |
| Features | Value (Step data) input Standard controller | CC-Link direct input | Capable of setting up operation (step data) without using a PC or teaching box | Operation by pulse signals |
| Compatible motor | Step motor (Servo/24 VDC) |  |  |  |
| Maximum number of step data | 64 points |  | 14 points | - |
| Power supply voltage | 24 VDC |  |  |  |
| Reference page | Page 560 | Page 600 | Page 576 | Page 590 |

JXC $\square$ Series

| Type | EtherCAT ${ }^{( }$ <br> direct input type | EtherNet//PTM direct input type | PROFINET <br> direct input type | DeviceNet ${ }^{\text {TM }}$ direct input type | IO-Link direct input type |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Series | JXCE1 | JXC91 | JXCP1 | JXCD1 | JXCL1 |
| Features | EtherCAT ${ }^{\circledR}$ direct input | EtherNet/IPTM direct input | PROFINET direct input | DeviceNet ${ }^{\text {TM }}$ direct input | IO-Link direct input |
| Compatible motor | Step motor (Servo/24 VDC) |  |  |  |  |
| Maximum number of step data | 64 points |  |  |  |  |
| Power supply voltage | 24 VDC |  |  |  |  |
| Reference page | Page 603-5 |  |  |  |  |

Specifications


| Model |  |  | LEHS10 | LEHS20 | LEHS32 | LEHS40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Open and close stroke/diameter [mm] |  | 4 | 6 | 8 | 12 |
|  | Lead [mm] |  | $\begin{aligned} & 255 / 76 \\ & (3.355) \end{aligned}$ | $\begin{aligned} & 235 / 56 \\ & (4.196) \end{aligned}$ | $\begin{aligned} & 235 / 40 \\ & (5.875) \end{aligned}$ | $\begin{aligned} & 235 / 40 \\ & (5.875) \end{aligned}$ |
|  | Gripping force <br> [N] Note 1) Note 3) | Basic | 2.2 to 5.5 | 9 to 22 | 36 to 90 | 52 to 130 |
|  |  | Compact | 1.4 to 3.5 | 7 to 17 | - | - |
|  | Open and close speed/ Pushing speed [mm/s] Note 2) Note 3) |  | $\begin{aligned} & 5 \text { to } 70 / \\ & 5 \text { to } 50 \end{aligned}$ | 5 to 80/ <br> 5 to 50 | $\begin{gathered} 5 \text { to } 100 / \\ 5 \text { to } 50 \end{gathered}$ | $\begin{gathered} 5 \text { to } 120 / \\ 5 \text { to } 50 \end{gathered}$ |
|  | Drive method |  | Slide screw + Wedge cam |  |  |  |
|  | Repeated length measurement accuracy [mm] ${ }^{\text {Nased4 }}$ ( |  | $\pm 0.05$ |  |  |  |
|  | Finger backlash/radius [mm] ${ }^{\text {Note 5) }}$ |  | 0.25 or less |  |  |  |
|  | Repeatability [mm] ${ }^{\text {Note 6) }}$ |  | $\pm 0.02$ |  |  |  |
|  | Positioning repeatability/radius [mm] |  | $\pm 0.05$ |  |  |  |
|  | Lost motion/radius [mm] ${ }^{\text {Note 7) }}$ |  | 0.25 or less |  |  |  |
|  | Impact/Vibration resistance [ $\mathrm{m} / \mathrm{s}^{2}$ ] Note 8) |  | 150/30 |  |  |  |
|  | Max. operating frequency [C.P.M] |  | 60 |  |  |  |
|  | Operating temperature range [ ${ }^{\mathrm{C}}$ ] |  | 5 to 40 |  |  |  |
|  | Operating humidity range [\%RH] |  | 90 or less (No condensation) |  |  |  |
|  | Weight [g] | Basic | 185 | 410 | 975 | 1265 |
|  |  | Compact | 150 | 345 | - | - |
| 景 | Motor size |  | $\square 20$ | $\square 28$ | $\square 42$ |  |
|  | Motor type |  | Step motor (Servo/24 VDC) |  |  |  |
|  | Encoder |  | Incremental A/B phase (800 pulse/rotation) |  |  |  |
|  | Rated voltage [V] |  | 24 VDC $\pm 10 \%$ |  |  |  |
|  | Power consumption/ <br> Standby power consumption when operating [W] Note 9) | Basic | 11/7 | 28/15 | 34/13 | 36/13 |
|  |  | Compact | 8/7 | 22/12 | - | - |
|  | Max. instantaneous power consumption [W] ${ }^{\text {Note } 10]}$ | Basic | 19 | 51 | 57 | 61 |
|  |  | Compact | 14 | 42 | - | - |

Note 1) Gripping force should be from 7 to 13 times the workpiece weight. Moving force should be $150 \%$ when releasing the workpiece. Gripping force accuracy should be $\pm 30 \%$ (F.S.) for LEHS10, $\pm 25 \%$ (F.S.) for LEHS20 and $\pm 20 \%$ (F.S.) for LEHS32/40. Gripping with heavy attachment and fast pushing speed, may not reach the product specification. In this case, decrease the weight and lower the pushing speed.
Note 2) Pushing speed should be set within the range during pushing (gripping) operation. Otherwise, it may cause malfunction. The open/close speed and pushing speed are for both fingers. The speed for one finger is half this value.
Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to $10 \%$ for each 5 m . (At 15 m : Reduced by up to 20\%)
Note 4) Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position
Note 5) There will be no influence of backlash during pushing (gripping) operation. Make the stroke longer for the amount of backlash when opening.
Note 6) Repeatability means the variation of the gripping position (workpiece position) when the gripping operation is repeatedly performed by the same sequence for the same workpiece.
Note 7) A reference value for correcting an error in reciprocal operation which occurs during the positioning operation.
Note 8) Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Note 9) The power consumption (including the controller) is for when the gripper is operating.
The standby power consumption when operating is for when the gripper is stopped in the set position during operation, including the energy saving mode when gripping.
Note 10) The maximum instantaneous power consumption (including the controller) is for when the gripper is operating. This value can be used for the selection of the power supply.

## How to Mount

b) Mounting B type
(when using the thread on the back of the body)


Component Parts

| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1}$ | Body | Aluminum alloy | Anodized |
| $\mathbf{2}$ | Motor plate | Aluminum alloy | Anodized |
| $\mathbf{3}$ | Guide ring | Aluminum alloy |  |
| $\mathbf{4}$ | Slide cam | Stainless steel | Heat treatment + Special treatment |
| $\mathbf{5}$ | Slide bolt | Stainless steel | Heat treatment + Special treatment |
| $\mathbf{6}$ | Finger | Carbon steel | Heat treatment + Special treatment |
| $\mathbf{7}$ | End plate | Stainless steel |  |
| $\mathbf{8}$ | Step motor (Servo/24 VDC) |  |  |

## LEHS Series

Step Motor (Servo/24 VDC)

Dimensions

## LEHS10(L)K3-4

|  | $[\mathrm{mm}]$ |  |
| :---: | :---: | :---: |
| Model | $\mathbf{L}$ | $\left(\mathrm{L}_{1}\right)$ |
| LEHS10K3-4 | 89.1 | $(59.6)$ |
| LEHS10LK3-4 | 72.6 | $(43.1)$ |



Note 1) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.
Note 2) Secure the motor cable so that the cable is not repeatedly bent.

## LEHS20(L)K3-6

|  |  | $[\mathrm{mm}]$ |
| :--- | :---: | :---: |
| Model | $\mathbf{L}$ | $\mathbf{( L 1})$ |
| LEHS20K3-6 | 98.8 | $(61.8)$ |
| LEHS20LK3-6 | 84.8 | $(47.8)$ |



Note 1) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.
Note 2) Secure the motor cable so that the cable is not repeatedly bent.

Mounting reference plane

Dimensions
LEHS32K3-8



Note 1) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.
Note 2) Secure the motor cable so that the cable is not repeatedly bent.


## Design/Selection

## $\triangle$ Warning

1. Keep the specified gripping point.

If the specified gripping range is exceeded, excessive moment is applied to the sliding part of the finger, which may have an adverse affect on the life of the product.

L: Gripping point
H: Overhang

2. Design the attachment to be lightweight and short.

A long and heavy attachment will increase inertial force when the product is opened or closed, which causes play on the finger. Even if the gripping point of the attachment is within a specified range, design it to be short and lightweight as possible.
For a long or large workpiece, select a model of a larger size or use two or more grippers together.
3. Provide a runoff space for attachment when a workpiece is extremely thin or small.
Without a runoff space, the product cannot perform stable gripping, and the displacement of a workpiece or gripping failure can result.

4. Select the model that allows for gripping force in relation to the workpiece weight, as appropriate.
The selection of inappropriate model can cause dropping of a workpiece. Gripping force should be from 10 to 20 times (LEHZ, LEHF) or 7 to 13 times (LEHS) of the workpiece weight.
Gripping Force Accuracy

| LEHZ(J)10(L) | LEHZ(J)16(L) | LEHZ(J)20(L) | LEHZ(J)25(L) | LEHZ32 |  | LEHZ40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\pm 30 \%$ (F.S.) | $\pm 25 \% ~(F . S) ~$. | $\pm 20 \%$ (F.S.) |  |  |  |  |
| LEHF10 | LEHF20 | LEHF32 | LEHF40 |  |  |  |
| $\pm 30 \%$ (F.S.) | $\pm 25 \% ~(F . S) ~$. | $\pm 20 \%$ (F.S.) |  |  |  |  |
| LEHS10(L) | LEHS20(L) | LEHS32 | LEHS40 |  |  |  |
| $\pm 30 \%$ (F.S.) | $\pm 25 \%$ (F.S.) | $\pm 20 \%$ (F.S.) |  |  |  |  |

5. Do not use the product in applications where excessive external force (including vibration) or impact force is applied to it.
It may lead to breakage or galling, which causes operation failure. Do not apply impact and vibration outside of the specifications.
6. Select the model that allows for open and close width relative to a workpiece.
The selection of an inappropriate model will cause gripping at unexpected positions due to variable open and close width of the product and the diameter of a workpiece the product can handle. It is also necessary to make a larger stroke to overcome backlash created when the product will open after gripping.

## Mounting

## $\triangle$ Warning

1. Do not drop or hit the gripper to avoid scratching and denting the mounting surfaces.
Even slight deformation can cause the deterioration of accuracy and operation failure.
2. When mounting the attachment, tighten the mounting screws within the specified torque range.
Tightening the screws with a higher torque than recommended may cause malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

## Mounting of Attachment to Finger

The attachment should be mounted with the torque specified in the following table by screwing the screw into the finger mounting female thread and hole.

## <LEHZ Series>

| Model | Screw <br> size | Max. tightening <br> torque $[\mathrm{N} \cdot \mathrm{m}]$ |
| :---: | :---: | :---: |
| LEHZ(J)10(L) | $\mathrm{M} 2.5 \times 0.45$ | 0.3 |
| LEHZ(J)16(L) | $\mathrm{M} 3 \times 0.5$ | 0.9 |
| LEHZ(J)20(L) | $\mathrm{M} 4 \times 0.7$ | 1.4 |
| LEHZ(J)25(L) | $\mathrm{M} 5 \times 0.8$ | 3.0 |
| LEHZ32 | $\mathrm{M} 6 \times 1$ | 5.0 |
| LEHZ40 | $\mathrm{M} 8 \times 1.25$ | 12.0 |

<LEHF Series>

| Model | Screw <br> size | Max. tightening <br> torque $[\mathrm{N} \cdot \mathrm{m}]$ |
| :---: | :---: | :---: |
| LEHF10 | $\mathrm{M} 2.5 \times 0.45$ | 0.3 |
| LEHF20 | $\mathrm{M} 3 \times 0.5$ | 0.9 |
| LEHF32 | $\mathrm{M} 4 \times 0.7$ | 1.4 |
| LEHF40 | $\mathrm{M} 4 \times 0.7$ | 1.4 |

<LEHS Series>

| Model | Screw <br> size | Max. tightening <br> torque $[\mathrm{N} \cdot \mathrm{m}]$ |
| :---: | :---: | :---: |
| LEHS10(L) | $\mathrm{M} 3 \times 0.5$ | 0.9 |
| LEHS20(L) | $\mathrm{M} 3 \times 0.5$ | 0.9 |
| LEHS32 | $\mathrm{M} 4 \times 0.7$ | 1.4 |
| LEHS40 | $\mathrm{M} 5 \times 0.8$ | 3.0 |

## LEH Series

Electric Grippers/ Specific Product Precautions 2
Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 3 to 8 for Electric Actuator Precautions.

## Mounting

Mounting of Electric Gripper, LEHZ/LEHZJ Series
When using the thread on the side of the body


When using the thread on the mounting plate


| Model | Screw <br> size | Max. <br> tightening <br> torque <br> $[\mathrm{N} \cdot \mathrm{m}]$ |
| :--- | :---: | :---: |
| LEHZ(J)10(L) | $\mathrm{M} 3 \times 0.5$ | 0.9 |
| LEHZ(J)16(L) | $\mathrm{M} 3 \times 0.5$ | 0.9 |
| LEHZ(J)20(L) | $\mathrm{M} 4 \times 0.7$ | 1.4 |
| LEHZ(J)25(L) | $\mathrm{M} 5 \times 0.8$ | 3.0 |
| LEHZ32 | $\mathrm{M} 5 \times 0.8$ | 3.0 |
| LEHZ40 | $\mathrm{M} 6 \times 1$ | 5.0 |

When using the thread on the back of the body


| Model | Screw <br> size | Max. <br> tightening <br> torque <br> $[\mathrm{N} \cdot \mathrm{m}]$ | Max. <br> screw-in <br> depth <br> $\mathrm{L}[\mathrm{mm}]$ |
| :--- | :---: | :---: | :---: |
| LEHZ(J)10(L) | $\mathrm{M} 4 \times 0.7$ | 1.4 | 6 |
| LEHZ(J)16(L) | $\mathrm{M} 4 \times 0.7$ | 1.4 | 6 |
| LEHZ(J)20(L) | $\mathrm{M} 5 \times 0.8$ | 3.0 | 8 |
| LEHZ(J)25(L) | $\mathrm{M} 6 \times 1$ | 5.0 | 10 |
| LEHZ32 | $\mathrm{M} 6 \times 1$ | 5.0 | 10 |
| LEHZ40 | $\mathrm{M} \times 1.25$ | 12.0 | 14 |

## Mounting of Electric Gripper, LEHF Series

When using the thread on the body


When using the thread on the mounting plate


| Model | Screw <br> size | Max. <br> tightening <br> torque <br> $[\mathrm{N} \cdot \mathrm{m}]$ |
| :---: | :---: | :---: |
| LEHF10 | $\mathrm{M} 4 \times 0.7$ | 1.4 |
| LEHF20 | $\mathrm{M} 5 \times 0.8$ | 3.0 |
| LEHF32 | $\mathrm{M} 6 \times 1$ | 5.0 |
| LEHF40 | $\mathrm{M} 6 \times 1$ | 5.0 |

When using the thread on the back of the body


| Model | Screw <br> size | Max. <br> tightening <br> torque <br> $[\mathrm{N} \cdot \mathrm{m}]$ | Max. <br> screw-in <br> depth <br> $\mathrm{L}[\mathrm{mm}]$ |
| :---: | :---: | :---: | :---: |
| LEHF10 | $\mathrm{M} 5 \times 0.8$ | 3.0 | 10 |
| LEHF20 | $\mathrm{M} 6 \times 1$ | 5.0 | 12 |
| LEHF32 | $\mathrm{M} 8 \times 1.25$ | 12.0 | 16 |
| LEHF40 | $\mathrm{M} 8 \times 1.25$ | 12.0 | 16 |

## Mounting of Electric Gripper, LEHS Series

When using the thread on the mounting plate


When using the thread on the back of the body


## Mounting

## $\triangle$ Warning

3. When mounting the electric gripper, tighten the mounting screws within the specified torque range.
Tightening the screws with a higher torque than recommended may cause malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.
4. When fixing the attachment to the finger, avoid applying excessive torque to the finger.
Play or deteriorated accuracy can result.
5. The mounting face has holes and slots for positioning. Use them for accurate positioning of the electric gripper if required.
6. When a workpiece is to be removed when it is not energized, open or close the finger manually or remove the attachment beforehand.
When it is necessary to operate the product by the manual override screws, check the position of the manual override screws of the product, and leave necessary space. Do not apply excessive torque to the manual override screws. This may lead to damage and malfunction.
7. When gripping a workpiece, keep a gap in the horizontal direction to prevent the load from concentrating on one finger, to allow for workpiece misalignment.
For the same purpose, when moving a workpiece for alignment by the product, minimize the friction resistance created by the movement of the workpiece. The finger can be displaced, play or breakage.
8. Perform adjustment and confirmation to ensure there is no external force applied to the finger.
If the finger is subject to repetitive lateral load or impact load, it can cause play or breakage and the lead screw can get stuck, which results in operation failure. Allow a clearance to prevent the workpiece or the attachment from hitting gripper product at the end of the stroke.
1) Stroke end when fingers are open

2) Stroke end when gripper is moving

3) When turning over

9. Adjust the gripping point so that an excessive force will not be applied to the fingers when inserting a workpiece. In particular, during a trial run, operate the product manually or at a low speed and check that the safety is assured without impact.


## Handling

## $\triangle$ Caution

1. The parameters of the stroke and the open/close speed are for both fingers.
The stroke and the open/close speed for one finger is half a set parameter.
2. When gripping a workpiece by the product, be sure to set to the pushing operation.
Also, do not hit the workpiece to the finger and attachment in positioning operation or in the range of positioning operation. Otherwise, the lead screw can get caught and cause operation failure. However, if the workpiece cannot be gripped in pushing operation (such as a plastically deformed workpiece, rubber component, etc.), you can grip it in positioning operation with consideration to the elastic force of the workpiece. In this case, keep the driving speed for impact specified in item 3 on page 483.
When the operation is interrupted by a stop or temporary stop, and a pushing operation instruction is output just after operation is restarted, the operating direction will vary depending on the start position.

## Handling

## $\triangle$ Caution

3. Keep the following driving speed range for pushing operation.

- LEHZ/LEHZJ: 5 to $50 \mathrm{~mm} / \mathrm{s}$ - LEHF10: 5 to $20 \mathrm{~mm} / \mathrm{s}$
- LEHF20/32/40: 5 to $\mathbf{3 0 ~ m m / s ~ - ~ L E H S : ~} 5$ to 50 mm/s

Operation at the speed outside of the range can get the lead screw caught and cause operation failure.
4. There is no backlash effect in pushing operation.

The return to origin is done by pushing operation.
The finger position can be displaced by the effect of the backlash during the positioning operation.
Take the backlash into consideration when setting the position.
5. Do not change the setting of energy saving mode.

When pushing (gripping) operation is continued, the heat generated by the motor can cause operation failure.
This is due to the self-lock mechanism in the lead screw, which makes the product keep the gripping force. To save the energy in this situation where the product is to be standby or continue to grip for extended periods of time, the product will be controlled to reduce current consumption (to $40 \%$ automatically after it has gripped a workpiece once). If there is the reduction of gripping force seen in the product after a workpiece has been gripped and deformed over certain amount of time, contact SMC separately.

## 6. INP output signal

1) Positioning operation

When the product comes within the set range by step data [In position], the INP output signal will turn on.
Initial value: Set to [0.50] or higher.
2) Pushing operation

When the effective force exceeds step data [Trigger LV], the INP output signal will turn on.
Use the product within the specified range of [Pushing force] and [Trigger LV].
a) To ensure that the gripper holds the workpiece with the set [Pushing force], it is recommended that the [Trigger LV] be set to the same value as the [Pushing force].
b) When the [Pushing force] and [Trigger LV] are set less than the specified range, the INP output signal will turn on from the pushing start position.
c) The INP output signal is turned on when pushing in the stroke end of an electric gripper even if workpiece is not held.
<INP output signal in the controller version>

- SV1.0* or more

Although the product automatically switches to the energy saving mode (reduced current) after pushing operation is completed, the INP output signal remains ON.

- SV0.6* or less
a. When [Trigger LV] is set to $40 \%$ (when the value is the same as the energy saving mode)
Although the product automatically switches to the energy saving mode (reduced current) after pushing operation is completed, the INP output signal remains ON.
b. When [Trigger LV] is set higher than $40 \%$

The product is turned on after pushing operation is completed, but INP output signal will turn off when current consumption is reduced automatically in energy saving mode.

Label position for controller version
<Pushing force and trigger level range> LEHZ Series

| Motor size | Pushing speed [mm/sec] | Pushing force (Setting input value) |
| :---: | :---: | :---: |
| Basic | 41 to 50 | $50 \%$ to $100 \%$ |
|  | 5 to 40 | $40 \%$ to $100 \%$ |
| Compact | 31 to 50 | $70 \%$ to $100 \%$ |
|  | 21 to 30 | $50 \%$ to $100 \%$ |
|  | 5 to 20 | $40 \%$ to $100 \%$ |

## LEHZJ Series

| Motor size | Body size | Pushing speed [ $\mathrm{mm} / \mathrm{sec}$ ] | Pushing force (Setting input value) |
| :---: | :---: | :---: | :---: |
| Basic | 10, 16 | 41 to 50 | 50\% to 100\% |
|  | 20, 25 | 5 to 40 | 40\% to 100\% |
| Compact | $10 \mathrm{~L}, 16 \mathrm{~L}$ | 21 to 50 | 80\% to 100\% |
|  |  | 11 to 20 | 60\% to $100 \%$ |
|  |  | 5 to 10 | 50\% to 100\% |
|  | $20 \mathrm{~L}, 25 \mathrm{~L}$ | 31 to 50 | 70\% to 100\% |
|  |  | 21 to 30 | 50\% to 100\% |
|  |  | 5 to 20 | 40\% to $100 \%$ |

## LEHF Series

| Pushing speed [mm/sec] | Pushing force (Setting input value) |
| :---: | :---: |
| 21 to 30 | $50 \%$ to $100 \%$ |
| 5 to 20 | $40 \%$ to $100 \%$ |

LEHS Series

| Motor size | Pushing speed [mm/sec] | Pushing force (Setting input value) |
| :---: | :---: | :---: |
| Basic | 41 to 50 | $50 \%$ to $100 \%$ |
|  | 5 to 40 | $40 \%$ to $100 \%$ |
| Compact | 31 to 50 | $80 \%$ to $100 \%$ |
|  | 11 to 30 | $60 \%$ to $100 \%$ |
|  | 5 to 10 | $40 \%$ to $100 \%$ |

7. When releasing a workpiece, set the moving force to 150\%.
If the torque is too small when a workpiece is gripped in pushing operation, the product can have galling and become unable to release the workpiece.
8. If the finger has galling due to operational setting error, etc., open and close the finger manually.
When it is necessary to operate the product by the manual override screws, check the position of the manual override screws of the product, and leave necessary space. Do not apply excessive torque to the manual override screws. This may lead to damage and malfunction.

## <LEHZJ series>

In the case of a gripper with dust covers, remove the encoder dust cover before operating the manual override.
Refit the encoder dust cover after using the manual override.


## Handling

## $\triangle$ Caution

## 9. Self-lock mechanism

The product keeps a gripping force due to the self-lock mechanism in the lead screw. Also, it will not operate in opposite direction even when external force is applied during gripping a workpiece.

## <Type of Stops, Cautions>

1) All the power supplies to the controller are shut off.

When the power supply is turned on to restart operation, the controller will be initialized, and the product can drop a workpiece due to a motor magnetic pole detective operation. (It means that there is finger motions of partial strokes by the phase detection of motor after power supply is turned on.) Remove the workpiece before restarting operation.
2) "EMG (stop)" of the CN1 of the controller is shut off. When using the stop switch on the teaching box;
a) In case both of [SVRE] and [SETON] are ON before stop, [SVRE]: OFF / [SETON]: ON
b) How to restart operation

In this situation, since [SVRE] is on before stop, [SVRE] will be turned on automatically when stop is released, and operation can be restarted after that. It is not necessary to remove a workpiece beforehand because a motor magnetic pole detective operation will not occur.
c) Cautions

An alarm can take place when operation is restarted from stop. Check that [SVRE] is turned on after the release of stop and restart operation.
3) "M24V (motor driving power supply)" of the CN1 of the controller is shut off.
a) There will be no change in output conditions due to stop.
b) How to restart operation

In this situation, operation can be restarted after stop is released. It is not necessary to remove a workpiece beforehand because a motor magnetic pole detective operation will not occur.
c) Cautions

An alarm can take place when stop is activated during operation or operation is restarted from stop.

## 10. Return to origin

1) It is recommended to set the directions of return to origin and workpiece gripping to the same direction.
If they are set opposite, there can be backlash, which worsens the measurement accuracy significantly.
2) If the direction of return to origin is set to CW (Internal gripping);
If the return to origin is performed with the product only, there can be significant deviation between different actuators. Use a workpiece to set return to origin.
3) If the return to origin is performed by using a workpiece; The stroke (operation range) will be shortened. Recheck the value of step data.
4) If basic parameters (Origin offset) are used;

When the return to origin is set with [Origin offset], it is necessary to change the current position of the product. Recheck the value of step data.

## Handling

## $\triangle$ Caution

11. In pushing (gripping) operation, set the product to a position of at least 0.5 mm away from a workpiece. (This position is referred to as a pushing start position.)
If the product is set to the same position as a workpiece, the following alarms may be generated and operation may become unstable.
a. "Posn failed" alarm is generated.

The product cannot reach a pushing start position due to variation in the width of workpieces.
b. "Pushing ALM" alarm is generated.

The product is pushed back from a pushing start position after starting to push.
c. "Err overflow" alarm

The displacement at the pushing start position exceeds the specified range.
12. When mounting the product, keep a 40 mm or longer diameter for bends in the motor cable.
13. Finite orbit type guide is used in the actuator finger part. By using this, when there are inertial force which cause by movements or rotation to the actuator, steel ball will move to one side and this will cause a large resistance and degrade the accuracy. When there are inertial force which cause by movements or rotation to the actuator, operate the finger to full stroke.
Especially in long stroke type, the accuracy of finger may degrade.

## Maintenance

## $\triangle$ Danger

1. When the product is to be removed, check it has not been gripping a workpiece.
There is a risk of dropping the workpiece.

## © Caution

1. The dust cover on the gripper finger (LEHZJ series only) is a consumable item, replace the dust cover as and when it is necessary.
Otherwise, machining chips and fine particles may get into the product from the outside, leading to operation failure.
The dust cover on the gripper finger can be damaged if the finger attachment or the workpiece comes into contact with the dust cover during operation.

[^0]:    Note) - Even in cases where the coefficient of friction is greater than $\mu=0.2$, for reasons of safety, select a gripping force which is at least 10 to 20 times greater than the workpiece weight, as recommended by SMC.

    - If high acceleration or impact forces are encountered during motion,

[^1]:    * The dust cover is a consumable part. Please replace as necessary.

[^2]:    * Pushing force is one of the values of step data that is input into the controller.

