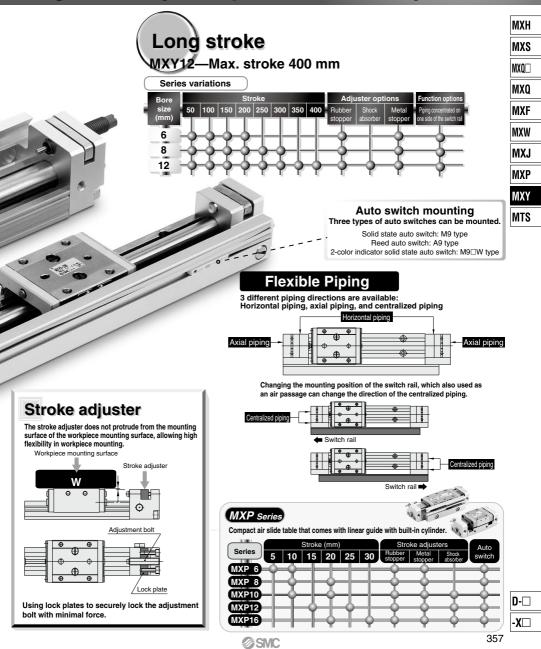

Air Slide Table/Long Stroke Type

MXY Series

ø6, ø8, ø12


A long stroke type of MXP series air slide table with integrated liner guide.

Use of linear guide provides rigid, The slide table comes with a built-in

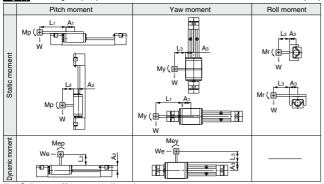


compact, and lightweight design. magnetically coupled rodless cylinder.

The following are the steps for selection of the MXY series best suited to your application,

MXH
MXS
MXQ
MXQ
MXF
MXW
MXJ
MXP
MXY
MTS

D-□ -X□


MXY Series Model Selection 2

Model Selection Step	Formula/Data	Selection Example
Operating Conditions		
Enumerate the operating conditions considering the mounting position and workpiece configuration.	 Model to be used Type of cushion Mounting orientation Average operating speed Va (mm/s) Load mass W (kg) Overhang Ln (mm) 	Cylinder: MXY8-100 Cushion: Rubber stopper Mounting: Horizontal wall mounting Average operating speed Va = 300 [mm/s] Load mass: W = 0.2 [kg] L2 = 40 mm L3 = 50 mm
2 Load Mass		
Find the collision speed V (mm/S) Confirm that the load mass W (kg) does not exceed the value in the graph.	$V = \frac{1.4}{\pi} \cdot Va * \text{ Correction factor (Reference value)}$ Graph (1)	V = 1.4 x 300 = 420 Confirm that V = 420 and W = 0.2 do not exceed the values in Graph (1). Applicable because it does not exceed the value in Graph (1). $\begin{array}{c} & & \\ &$
B Load Factor		
3-1 Load Factor of Static Momen	t	
Find the static moment M (N·m). Find the allowable static moment Ma (N·m). Find the load factor Ω ₁ of the static moment.	M = W x 9.8 (Ln + An)/1000 Corrected value of moment center position distance An: Table (1) Pitch, Yaw moment: Graph (2) Roll moment: Graph (3) Q(1 = M/Ma	Examine Mr. Mr = 0.2 x 9.8 (40 + 15.5)/1000 = 0.1 A2 = 15.5 Obtain Mar = 13 from Va = 300 in Graph (3). $\alpha_{1} = 0.1/13 = 0.008$
Find the dynamic moment Me (N·m).		Examine Mep.
Find the allowable dynamic moment Mea (N·m).	$\begin{split} \text{Me} &= 1/3\text{-We} \times 9.8 \ (\text{Ln} + \text{An})/1000 \\ \text{Mass equivalent to impact We} &= \delta\text{-W-V} \\ \delta\text{: Bumper coefficient} \\ \text{Rubber stopper screw: 4/100} \\ \text{Shock absorber: 1/100} \\ \text{Metal stopper screw: 16/100} \\ \text{Corrected value of moment center position} \end{split}$	Mep = $1/3 \times 3.36 \times 9.8 \times (40+15.5)/1000 = 0.61$ We = $4/100 \times 0.2 \times 420 = 3.36$ A ² = 15.5 Obtain Meap = 4.2 from V = 420 in Graph (2). $\Omega_2 = 0.61/4.2 = 0.15$
dynamic moment.	distance An: Table (1) Pitch, yaw moment: Graph (2) Ω2 = Me/Mea	Examine Mey. V mm/s Mey = $1/3 \times 3.36 \times 9.8 \times (50+19)/1000 = 0.76$ We = 3.36 A ³ = 19 Obtain Meay = 4.2 from V = 420 in Graph (2). $\Omega c^2 = 0.76/4.2 = 0.18$
3-3 Sum of the Load Factors Use is possible if the sum of		$V \text{ mm/s}^{420}$ $\Omega_{11} + \Omega_{2} + \Omega_{2}' =$
the load factors does not exceed 1.	$\Omega_{1} + \Omega_{2} < 1$	Applicable because 0.008 + 0.15 + 0.18 = 0.34 < 1

Model Selection MXY Series


Fig. (2) Allowable Static Load: F(N)

Fig. (1) Overhang: Ln (mm), Correction Value of Moment Center Position Distance: An (mm)

Note) Static moment: Moment generated by gravity Dynamic moment: Moment generated by impact when colliding with stopper

Graph (2) Allowable Moment Pitch Moment: Map, Meap

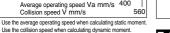
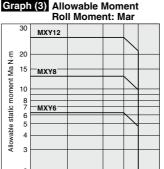



Table (1) Correction Value of Moment Center

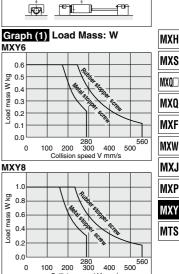
Position Distance: An (mm)							
Model		d value of mom istance (Refer t					
	A1	A2	Aз				
MXY6	16	14	15				
MXY8	20	15.5	19				
MXY12 26 23.5 25							

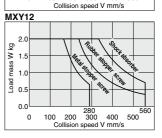
2 ⊑ 50 200 300 400 100 Average operating speed Va mm/s

Table (2) Max. Allowable Load Mass: Wmax (kg)

Model	Max. allowable load weight						
MXY6	0.6						
MXY8	1						
MXY12	2						

value represents the maximum value for each allowable load mass. For the maximum allowable load mass for each piston speed, please refer to Graph (1).


Table (3) Maximum Allowable Moment: Mmax (N·m)


Model	Pitch/Yaw moment: Mpmax/Mymax	Roll moment: Mrmax
MXY6	2.6	6.2
MXY8	5.7	13
MXY12	12	28

The above value represents the maximum value of allowable moment. For the maximum allowable moment for each piston speed, please refer to Graph (2) and (3).

Symbol

Symbol					
Symbol	Definition	Unit	Symbol	Definition	Unit
An (n = 1 to 3)	Corrected value of moment center position distance	mm F Allowable static load			N
Ln (n = 1 to 3)	Overhang	mm	v	Collision speed	mm/s
M (Mp, My, Mr)	Static moment (pitch, yaw, roll)	N∙m	Va	Average operating speed	mm/s
Ma (Map, May, Mar)	Allowable static moment (pitch, yaw, roll)	N∙m	w	Load mass	kg
Me (Mep, Mey)	Dynamic moment (pitch, yaw)	N∙m	Wa	Equivalent mass for impact	kg
Mea (Meap, Meay)	Allowable dynamic moment (pitch, yaw)	N∙m	Wmax	Max. allowable load mass	kg
Mmax (Mpmax, Mymax, Mrmax)	Max. allowable moment (pitch, yaw, roll)	N⋅m	α	Load factor	-

0 100 200 300 400

Table (4) Allowable Static Load: F (N)

Model	Allowable static load
MXY6	580
MXY8	980
MXY12	1600

The above value represents the applicable load at the position where the moment does not work at the time of stop. Factors such as impact, etc, are not in consideration with the value.

361

How to Order M9BW MXY 6 50 Mode to Order For details, refer to page 363. Number of auto switches Bore size/Standard stroke (mm) Nil 2 pcs. 6 50, 100, 150, 200 s 1 pc. 50, 100, 150, 200, 250, 300 8 "n" pcs. n 50, 100, 150, 200, 250, 300, 350, 400 12 Auto switch type Adjuster option Nil Without auto switch (Built-in magnet) Rubber stopper Nil в Shock absorber С Metal stopper One side centralized piping, switch rail * Only for MXY12 One side centralized piping, with switch rail Nil Without one side centralized piping, without switch rail Ν

The auto switch cannot be mounted on the one side centralized piping type without switch rail (N).

* Solid state auto switches marked with "O" are produced upon receipt of order.

Applicable Auto	Switches/Refer to pages 1119 to 1245 for further information on auto switches.
-----------------	--

		Electrical	light	Wiring	Load voltag		ge	Auto swite	ch model	Lead	wire	engtl	h (m)	Pre-wired	Appli	aabla																
Туре	Special function	Electrical entry	Indicator light	(Output)	D	C	AC	Perpendicular	In-line	0.5 (Nil)	1 (M)	3 (L)	5 (Z)	connector	loi																	
				3-wire (NPN)		5 V, 12 V		M9NV	M9N	•	•	۲	0	0	IC circuit																	
	—			3-wire (PNP)		5 V, 12 V		M9PV	M9P		•	٠	0	0	IC CITCUIL																	
<u> </u>						i				2-wire		12 V		M9BV	M9B	•	•	•	0	0	-											
state witch	Discussedia indiantian					3-wire (NPN)	24 V 5 V, 12 V	24 V 5 V, 12 V -	24 V 5 V, 12 V	24 V 5 V, 12	24 V 5 V	EV 10V		M9NWV	M9NW	•	•	۲	0	0	IC circuit	Relay,										
d s Sw	Diagnostic indication (2-color indicator)	Grommet	Yes	3-wire (PNP)	24 V 5 V, 12 V	24 V 5 V, 12 V						24 V	24 V	24 V	24 V	24 V	24 V	24 V	24 V	24 V	24 V 🛛	24 V 5 V, 12 V -	V 5 V, 12 V -	5 V, 12 V	5 V, 12 V	4V 5V, 12V	24 V		M9PWV	M9PW		•
Solid auto s				2-wire		12 V	12 V	12 V	12 V	12 V	12 V	12 V	12 V	12 V		M9BWV	M9BW	•	•	•	0	0	-	1 20								
57 G				3-wire (NPN)	5 V, 12 V		EV 10V		M9NAV*1	M9NA*1	0	0	۲	0	0	IC circuit																
	Water resistant (2-color indicator)			3-wire (PNP)			Ľ														5 V, 12 V		M9PAV*1	M9PA ^{*1}	0	0	٠	0	0	IC CITCUIL		
				2-wire		12 V		M9BAV*1	M9BA*1	0	0	۲	0	0																		
eed switch		0	Yes	3-wire (Equiv. to NPN)	—	5 V	-	A96V	A96	•	-	•	-	—	IC circuit	_																
to s	_	Grommet		2-wire	24 V	12 V	100 V	A93V*2	A93	•	۲	٠	•	_	-	Relay,																
Re auto			None	∠-wire	24 V	12 V	100 V or less	A90V	A90		—	۲	-	—	IC circuit	PLC																

*1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.

*2 1 m type lead wire is only applicable to D-A93.

* Lead wire length symbols: 0.5 m	Nil	(Example) M9NW
1 m	м	(Example) MONIMM

5 m..... (Example) M9NWZ * Refer to page 369 for applicable auto switches in addition to those listed above

* For details on auto switches with a pre-wired connector, refer to pages 1192 and 1193.

* Auto switches are shipped together (not assembled).

3 m....

Specifications

Мо	del	MXY6	MXY8	MXY12			
Bore size (m		6	8	12			
Port size	,	0	M5 x 0.8	12			
Fluid			Air	r			
Action			Double acting (type)	M)		
Operating pr	essure		0.2 to 0.55 MPa	<u> </u>			
Proof pressu			0.83 MPa		M)		
Ambient and flu			-10 to 60°C		1111		
Operating speed (Average operat	l range		50 to 400 mm/s Note al stopper: 50 to 200		MX		
Cushion		Rubber bumper Shock absorber Note 3) (option, not available on MXY6, MXY8)					
Lubrication			one (with metal stopp be (equipment), unlu		M)		
		INOI1-IUI		Dilcaleu	INT		
Stroke adjus			Standard One side 0 to 5 mm				
Stroke	Rubber stopper Shock absorber		One side 0 to 5 mm		M)		
adjustment		— — One side 0 to 15 mm					
range	Metal stopper	One side 0 to 5 mm					
		Reed auto switches (2-wire, 3-wire)			M		
Auto switch	Auto switch Solid state auto switches (2-wire, 3-wire) 2-color indicator solid state auto switches (2-wire, 3-wire)						
Stroke lengt	h tolerance	+1 mm					
Note 1) Averag	e operating s	peed: Speed that the	stroke is divided by	a period of time from	M		

starting the operation to reaching the end.

Note 2) When the smooth operation is required in a low speed range of 80 mm/s or less, contact SMC.

Note 3) The shock absorber service life is different from that of the MXY cylinder depending on operating conditions. Refer to the Specific Product Precautions for the replacement period.

Theoretical Output

(N)

MTS

Made to Order: lade to Individual Specifications (Refer to pages 370 and 371 for details.)

Symbol	Specifications
-X7	PTFE grease
-X9	Grease for food processing machines
-X11	Adjusting bolt, long specification (Adjustment range: 15 mm)
-X12	Adjusting bolt, long specification (Adjustment range: 25 mm)
-X39	Fluororubber seal
-X42	Anti-corrosive guide unit
-X45	EPDM seal

Weight

Cylinder bore Operating pressure (MPa) Piston area (mm) (mm²) 0.2 0.55 0.3 0.4 0.5 6 28 6 8 11 14 15 8 50 10 15 20 25 28 12 113 34 45 57 62 23

(mm)

Standard Stroke

Model	Standard stroke
MXY6	50, 100, 150, 200
MXY8	50, 100, 150, 200, 250, 300
MXY12	50, 100, 150, 200, 250, 300, 350, 400

Model Magnetic holding force MXY6 19 MXY8 34 **MXY12** 77

Magnetic

Holding Force

(g)

(N)

	One side centralized piping, with switch rail				One side centralized piping, without switch rail					Additional weight of option							
Model	Stroke (mm)				Stroke (mm)					Shock absorber							
	50	100	150	200	250	300	350	400	50	100	150	200	250	300	350	400	SHOCK absorber
MXY6	270	330	390	450	-	-	-	-	230	280	330	380	-	-	-	-	-
MXY8	420	510	600	690	780	870	-	-	410	480	550	620	690	760	-	-	-
MXY12	930	1060	1190	1320	1450	1580	1710	1840	910	1020	1130	1240	1350	1460	1570	1680	15

Moisture Control Tube **IDK Series**

When operating an actuator with a small diameter and a short stroke at a high frequency, the dew condensation (water droplet) may occur inside the piping depending on the conditions.

Simply connecting the moisture control tube to the actuator will prevent dew condensation from occurring. For details, refer to the IDK series in the Best Pneumatics No. 6.

D-🗆

-X 🗆

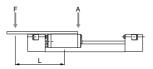

MXY Series

Table Deflection (Reference Values)

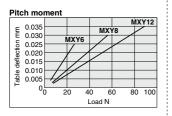
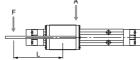
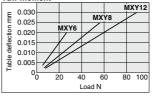

The graphs below show the table displacement when the static moment load is applied to the table. The graphs do not show the loadable mass. Refer to the Model Selection for the loadable mass.

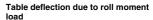
Table deflection due to pitch moment load

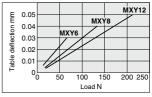
Displacement at "A" when load is applied "F"



L dimension	mm
MXY6	100
MXY8	100
MXY12	140

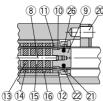

Table deflection due to yaw moment load


Displacement at "A" when load is applied "F"



Displacement at "A" when load is applied "F"

mm
100
100
140


Roll moment

Air Slide Table Long Stroke Type **MXY Series**

Construction

Detail drawing of part A

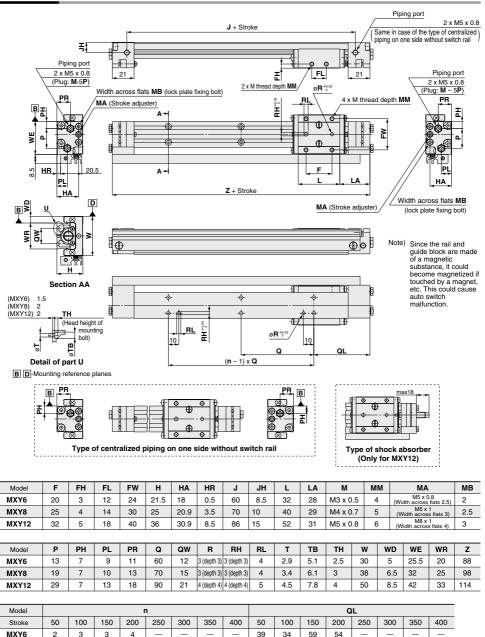
Component Parts

No.	Description	Material	Note
1	Rail	Stainless steel	Heat treatment, electroless nickel plated
2	Guide block	Stainless steel	Heat treatment, electroless nickel plated
3	End plate	Aluminum alloy	Hard anodized
4	Body	Aluminum alloy	Hard anodized
5	Tube	Stainless steel	
6	Cover	Resin	
7	Scraper	Stainless steel, NBR	
8	Shaft	Stainless steel	
9	Piston	Brass	Electroless nickel plated
10	Wear ring A	Resin	
11	Wear ring B	Resin	
12	Spacer	Brass	Electroless nickel plated
13	Magnet A	_	Nickel plated
14	Magnet B	-	Nickel plated
15	Yoke A	Steel	Electroless nickel plated
16	Yoke B	Steel	Electroless nickel plated
17	Return guide	Resin	
18	End cap	Resin	
19	Stud	Stainless steel	Heat treatment

Replacement Parts

Bore size (mm)	Kit no.	Contents		
6	MXY6-PS			
8	MXY8-PS	A set of two of 10, 11, 22 and 26 each		
12	MXY12-PS			

No.	Description	Material	I	Note
20	Stopper screw	Stainless steel	Heat treatment	
21	External magnet fix plate	Stainless steel		
22	Cylinder scraper	NBR		
23	Lock plate	Stainless steel		
	Adjustment bolt	Steel	Zinc chromated	Rubber stopper
24	Adjustment bolt	Stainless steel		Metal stopper
	Shock absorber	—		Shock absorber
25	Steel ball	High carbon chrome bearing steel		
26	Piston seal	NBR		
27	O-ring	NBR		
28	O-ring	NBR		
29	Adjustment bumper	Polyurethane	Rubber stopper	
30	Plug	Brass	Electroles	s nickel plated
31	Switch rail	Aluminum alloy	Hard	anodized
32	Stud	Brass	Electroless nickel plated	
33	Gasket	NBR		
34	Magnet	_	Nick	el plated
35	Magnet holder	Steel	Electroless nickel plated	
36	O-ring	NBR		


Replacement Parts: Grease Pack

Grease pack part no.	
GR-S-010 (10g)	
GR-S-020 (20g)	

MXY Series

Dimensions

MXY8

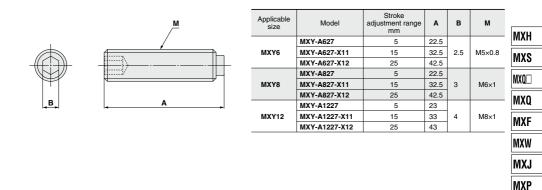
MXY12

2 2 3 4 5 5

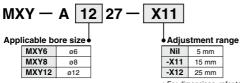
2 2 3 3 4 4

5 **SMC**

5


39 64 54 44 34 59

37 62 42

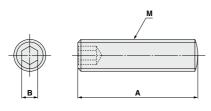

67 47 72 52 77

_

Dimensions of Adjusting Bolt/Rubber Stopper

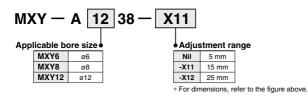
How to Order Adjusting Bolt/Rubber Stopper

* For dimensions, refer to the figure above.



MXY

MTS


MXY Series

Dimensions of Adjusting Bolt/Metal Stopper

Applicable size			A	в	м
MXY-A638		5	22.5		
MXY6	MXY-A638-X11	15	32.5	2.5	M5×0.8
	MXY-A638-X12	25	42.5		
	MXY-A838	5	22.5		
MXY8	MXY-A838-X11	15	32.5	3	M6×1
	MXY-A838-X12	25	42.5		
	MXY-A1238	5	23		
MXY12	MXY-A1238-X11	15	33	4	M8×1
	MXY-A1238-X12	25	43		

How to Order Adjusting Bolt/Metal Stopper

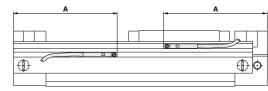
MXY Series Auto Switch Mounting

Auto Switch Proper Mounting Position (Detection at Stroke End)

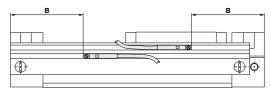
Reed Auto Switch

D-A90(V), D-A93(V), D-A96(V) (mm)						
Model	Mou	Inting	Auto switch operating range			
MXY6	Α	54				
WATO	в	34				
MXY8	Α	59	5			
	В	39				
MXY12	Α	67				
	В	47				

Solid State Auto Switch D-M9B(V), D-M9N(V), D-M9P(V)

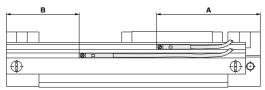

= ····=(·), = ·····(·), = ·····(·)					
Model	Mou	Inting	Auto switch operating range		
MXY6	Α	50	3		
WAYO	в	38			
MXY8	Α	55	0.5		
	В	43	3.5		
MXY12	Α	63	3		
	В	51	3		

2-Color Indicator Solid State Auto Switch D-M9BW(V), D-M9NW(V), D-M9PW, D-M9□A(V) (mm)


Model	Mou	Inting	Auto switch operating range
MXY6 A		50	3
WATO	в	38	5
МХҮ8	Α	55	3.5
MATO	В	43	3.5
MXY12	AVV12 A 6		3
MATI2	В	51	3

 Adjust the auto switch after confirming the operating conditions in the actual setting.

Lead wire entries outside



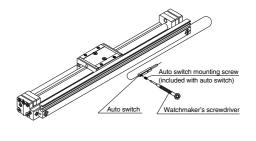
Lead wire entries inside

MXH
MXS
MXQ□
MXQ
MXF
MXW
MXJ
MXP
MXY
MTS

Lead wire entries parallel

Auto Switch Mounting

A Caution

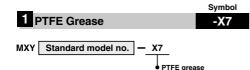

Auto Switch Mounting Tool

 When tightening the auto switch mounting screw (included with auto switch), use a watchmaker's screwdriver with a handle diameter of about 5 to 6 mm.

Tightening Torque

Tightening Torque of Auto Switch Mounting Screw (N∙m
---	-----

Auto switch model	Tightening torque
D-A9□(V)	0.10 to 0.20
D-M9□(V) D-M9□W(V)	0.05 to 0.15
D-M9□A(V)	0.05 to 0.10


Other than the applicable auto switches listed in "How to Order", the following auto switches can be mounted. * Normally closed (NC = b contact) solid state auto switches (D-F9G/F9H types) and a solid state auto switch (D-F8) are also available. Refer to pages 1136 and 1137 for details.

MXY Series Made to Order: Individual Specifications 1

Please contact SMC for detailed dimensions, specifications and lead times.

PTFE grease is used for all parts that grease is applied.

Specifications

Туре	PTFE grease
Bore size (mm)	6, 8, 12

* Dimensions other than the above is the same as the standard type.

Marning Precautions

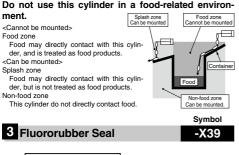
Be aware that smoking cigarettes, etc. after your hands have come into contact with the grease used in this cylinder can create a gas that is hazardous to humans.

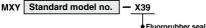
	Symbol
2 Grease for Food Processing Machines	-X9

Standard model no. - X9 • Grease for food

processing machines

Grease for food processing machines is used for all parts that grease is applied.

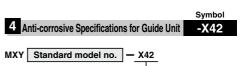

Specifications


MXY

Туре	Grease for Food Processing Machines (NSF-H1 certified)/Aluminum Complex Soap Base Grease
Bore size (mm)	6, 8, 12
. ,	

 \ast Dimensions other than the above is the same as the standard type.

A Caution



Change the materials for the piston seal, cylinder scraper, O-rings and scrapers (rubber lined parts) to fluororubber.

Specifications

Туре	Fluororubber seal
Bore size (mm)	6, 8, 12
Seal material	Fluororubber

 \ast Dimensions other than the above is the same as the standard type 370

 Anti-corrosive specifications for guide unit

Martensitic stainless steel is used for the rail and guide block. Use this treatment if more effective anti-corrosive measures are necessary. Anti-corrosive treatment is applied to the rail and guide block.

Specifications

Type Anti-corrosive guide unit	
Bore size (mm)	6, 8, 12
Surface treatment	Special anti-corrosive treatment (2)

* 1 Dimensions other than the above is the same as the standard type.

* 2 The special anti-corrosive treatment turns rail and guide block black.

MXY Standard model no. - X45

EPDM seal

Change the materials for the piston seal, cylinder scraper, O-rings and scrapers (rubber lined parts) to EPDM.

Specifications

Туре	EPDM seal
Bore size (mm)	6, 8, 12
Seal material	EPDM
Grease	PTFE grease

* Dimensions other than the above is the same as the standard type.

Marning Precautions

Be aware that smoking cigarettes, etc. after your hands have come into contact with the grease used in this cylinder can create a gas that is hazardous to humans.

MXY Series Made to Order: Individual Specifications 2

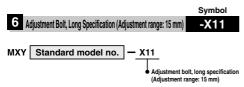
MXH

MXS

MXQ

MXQ

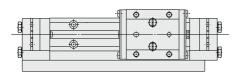
MXF

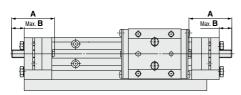

MXW

MXJ

MXP

MXY Mts

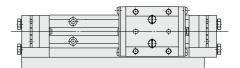

Please contact SMC for detailed dimensions, specifications and lead times.

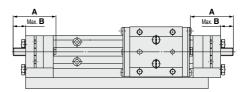


* -X11 is not available for those with a shock absorber.

The average adjusting stroke range was extended from 5 mm to 15 mm with a long adjustment bolt.

Dimensions





Rubber Sto	pper	(mm)
Model	Α	В
MXY6	32.5	10
MXY8	32.5	10
MXY12	33	10
	00	10
Metal Stopp		(mm)
Metal Stopp	per	(mm)
Metal Stopp Model	ber A	(mm) B

_	Symbol
Adjustment Bolt, Long Specification (Adjustment range: 25 mm)	-X12
MXY Standard model no X12	It, long specification
(Adjustment ra	
* -X12 is not available for those with a shock absorber.	
The average adjusting stroke range was extended to 25 mm with a long adjustment bolt.	ed from 5 mm
Dimensions	

Dimensions

pper	(mm)
Α	В
42.5	20
42.5	20
43	20
Metal Stopper	
	(mm)
A	(mm) B
	· · · ·
Α	В
	42.5 42.5 43

MXY Series Specific Product Precautions 1

Be sure to read this before handling the products.

Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Selection

A Caution

1. Use a load within a range that does not exceed the operating limit.

Select models based on the maximum load weight and the allowable moment. Refer to model selection on pages 359 to 361 for detailed methods. If operated beyond the operating limit, the eccentric load applied to the guide section will be excessive. This can have an adverse effect on service life due to vibration in the guide unit and loss of accuracy, etc.

2. When performing intermediate stops with an external stopper, employ measures to prevent lurching.

If lurching occurs damage can result. When making a stop with an external stopper to be followed by continued forward movement, first supply pressure to momentarily reverse the table, then retract the intermediate stopper, and finally apply pressure to the opposite port to operate the table again.

 In vertical operation, it is not possible to stop the piston at an intermediate position using a closed center solenoid valve, etc.

In vertical operation, it is not possible to stop the piston at an intermediate position using a closed center solenoid valve because it can cause dislocation of the magnet coupling. The only available option in such cases is use of an external stopper for an intermediate stop.

4. When stopping the piston using a closed center solenoid valve in horizontal operation, do not allow the kinetic energy exceed the allowable kinetic energy.

When stopping the piston using a closed center solenoid valve in horizontal operation, do not allow the kinetic energy of the load to exceed the values shown below. If the allowable value is exceeded, it can cause dislocation of the magnet coupling.

Model	Allowable kinetic energy for intermediate stop (J)
MXY6	0.007
MXY8	0.014
MXY12	0.047

5. Do not operate in such a way that excessive external forces or impact forces are applied to the product.

This can cause damage.

6. Be careful in an application which requires precision in the middle of a stroke.

If straightness is required in the middle of a stroke, fix the entire rail mounting surface on the base.

Mounting

▲ Caution

1. Do not scratch or gouge the mounting surfaces of the body, table and end plate.

This can cause loss of parallelism in the mounting surfaces, vibration in the guide unit and increased operating resistance, etc.

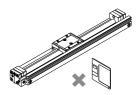
2. Do not scratch or gouge the transfer surfaces of the rail and guide.

This can cause vibration and increased operating resistance, etc.

3. Do not apply strong impacts or excessive moment when mounting workpieces.

Application of external forces greater than the allowable moment can cause vibration in the guide unit and increased operating resistance, etc.

4. Ensure that the parallelism of the mounting surface is 0.02 mm or less.


Poor parallelism of the workpiece mounted on the body, the base, and other parts can cause vibration of the guide unit and increased operating resistance, etc.

Mounting

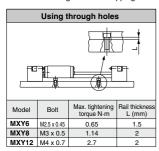
\land Caution

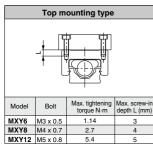
- 5. For connection to a load that has an external support or guide mechanism, select an appropriate connection method and perform careful alignment.
- 6. Keep away objects which can be influenced by magnets.

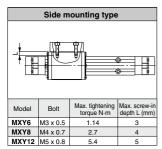
A magnet is built inside the body or, in case of a type with auto switch, on the side of the guide lock. Please keep away magnetic disks, cards or tapes. Otherwise, the data can be deleted.

Do not attach magnets to the rail and guide block.

Since the body and table (guide block) are made of a magnetic substance, it could become magnetized if touched by a magnet, etc. This could cause auto switch malfunction.


MXY Series Specific Product Precautions 2


Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 3 to 12


Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Mounting

Caution 3. When mounting the body, use screws of an appropriate length and do not exceed the maximum tightening torque. Tightening with a torque above the limit could cause malfunction. Whereas tightening insufficiently could result in misalignment or dropping.

9. Be careful not to bruise the outer surface of the cylinder tube.

If can damage the scraper and wear ring and result in malfunction.

10. Make sure that the magnet coupling is in position when operating.

In case it is displaced, please return it to the right position by pushing the external mover by hand (or pushing the piston mover with air pressure).

11. In vertical operation, be careful about dislocation of the magnet coupling.

Note that the mover may drop off due to dislocation of the magnet coupling if pressure or load beyond the specifi-cation is applied.

12. The positioning holes on the top surface of the guide block and those on the bottom of the rail are not aligned.

> These holes are used when re-mounting the same product after having removed it for maintenance.

Operating Environment

A Caution

 Do not use in environments where there is direct exposure to liquids such as cutting oil.

Operation in environments where the body is exposed to cutting oil, coolant or oil mist can cause vibration, increased operating resistance and air leakage, etc.

 Do not use in environments where there is direct exposure to foreign matter such as dust, dirt, chips and spatter.

This can cause vibration, increased operating resistance and air leakage, etc.

Do not use the product in the following conditions.

- 3. Provide shade in locations exposed to direct sunlight.
- 4. Block off sources of heat located near by.

When there are heat sources in the surrounding area, radiated heat may cause the product's temperature to rise and exceed the operating temperature range. Block off the heat with a cover, etc.

Operating Environment

\land Caution

 Do not use in locations where vibration or impact occurs. Do not use the product in such an

environment as is can result in damage or malfunction.

6. Be careful about the corrosion resistance of the linear guide. Be careful the rail and guide block use martensitic stainless steel, which is inferior to austenitic stainless steel in terms of corrosion resistance. Rust may result especially in an environment that allows water drops from condensation to stay on the surface.

Handling of Adjuster Options Stroke adjuster

ACaution

- 1. Do not replace the special adjusting bolt with other bolts. This may cause looseness and damage due to impact forces, etc.
- 2. Use the tightening torque in the table below for the lock nut. Insufficient torque will cause a

decrease in the positioning accuracy.

Service Life and Replacement Period of Shock Absorber

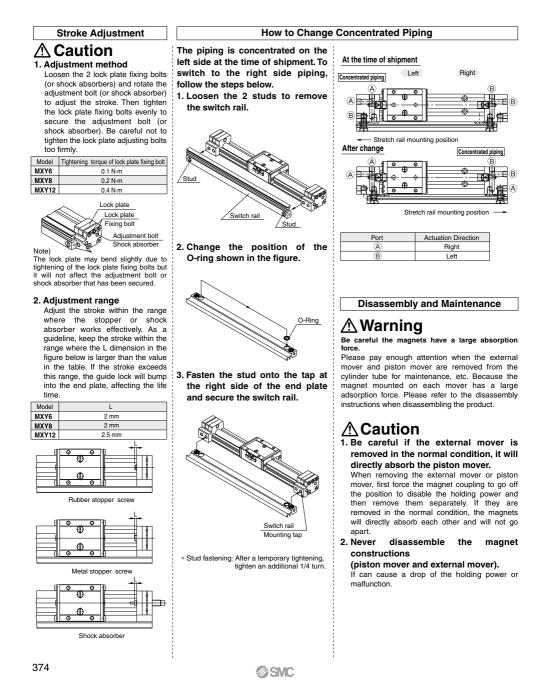
ACaution

- 1. Allowable operating cycle under the specifications set in this catalog is shown below.
 - 1.2 million cycles RB08□□ Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25°C). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.

Applicable size	Shock absorber model
MXY12	RB0806

MXY

MTS



MXY Series Specific Product Precautions 3

Be sure to read this before handling the products.

Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

