Electric Actuator

 C ccious
Rod Type Guide Rod Type

- Intermediate strokes have been added to the LEY63.
- Normally-closed solid state auto switches have been

RoHS added.

- The JXC series step motor controller has been added.

Step Motor (Servo/24 VDC)
Servo Motor (24 VDC)

Rod Type LEY Series

Size: 16, 25, 32, 40
>p. 37

Long stroke:
 Max. 500 mm (LEY32, 40)

Mounting variations

- Direct mounting: 3 directions, Bracket mounting: 3 types
- Either positioning or pushing control can be selected. It is possible to hold the actuator with the rod pushing a workpiece, etc.

Guide Rod Type LEYG Series

Size: 16, 25, 32, 40 p. 105

Lateral end load: 5 times more ${ }^{81}$

*1 Compared with the rod type, size 25, and 100 mm stroke
Compatible with sliding bearings and ball bushing bearings Compatible with moment loads and stoppers (sliding bearings)

- Either positioning or pushing control can be selected.

It is possible to hold the actuator with the rod pushing a workpiece, etc.

Guide rod type/ In-line motor type

AC Servo Motor Type

Rod Type LEY Series Size: 25, 32, 63

Dust-tightWater-jet-proof (IP65 Equivalent): -X5

- High-output motor (100/200/400 W) - Improved high-speed transfer ability - High acceleration/deceleration compatible ($5000 \mathrm{~mm} / \mathrm{s}^{2}$)
- Pulse input/CC-Link/SSCNETIII types -With internal absolute encoder (For the LECSB/C/S)

Rod Type LEY Series/Size: 16, 25, 32, 40

Control of intermediate positioning and pushing is possible.
High precision with ball screws
(Positioning repeatability: $\pm 0.02 \mathrm{~mm}$)

AC Servo Motor Type

Rod Type LEY Series/Size: 25, 32, 63

- High-output motor (100/200/400 W)
- Improved high-speed transfer ability
- High acceleration/deceleration compatible ($5000 \mathrm{~mm} / \mathrm{s}^{2}$)
- Pulse input/CC-Link direct input/SSCNET III types
-With internal absolute encoder
* An incremental encoder can also be selected.
\bullet Positioning repeatability: $\pm 0.01 \mathrm{~mm}$ (High-precision type)

Large bore size 63

Selectable motor mounting position (4 directions)

- Max. work load [kg]

	Top/Parallel	In-line
Horizontal	$\mathbf{2 0 0}$	80
Vertical	$\mathbf{1 1 5}$	72

- High-output motor: 400 w
- Max. speed: $1000 \mathrm{~mm} / \mathrm{s}$
$* 500 \mathrm{~mm}$ stroke
- Dust-tight/Water-jet-proof specification (IP65 equivalent)
* Option
- Max. force [N]

Top/Parallel	3343
In-line	1910

Guide Rod Type LEYG Series/Size: 16, 25, 32, 40

Compact, integrated guide rods Lateral load resistance and high non-rotating accuracy

Compatible with sliding bearings and ball bushing bearings

- Sliding bearings

Suitable for lateral load applications such as when using a stopper where impact is applied

- Ball bushing bearings

Smooth operation suitable for pushers and lifters

Improved rigidity

Lateral end load: 5 times more*
*1 Compared with the rod type, size 25 , and 100 mm stroke

Motor top mounting type

AC Servo Motor Type

Guide Rod Type LEYG Series/Size: 25, 32

Mounting Variations

Direct Mounting

When using auto switches for the guide rod type LEYG series, refer to page 185.

Guide rod type/ In-line motor type

Bore size [mm]	16	25	32	40
Sliding bearings	$\pm 0.06^{\circ}$		$\pm 0.05^{\circ}$	
Ball bushing bearings	$\pm 0.05^{\circ}$	$\pm 0.04^{\circ}$		

When the cylinder is retracted (initial value), the non-rotating accuracy without a load and without deflection of the guide rods will be below the values shown in the table above.

Non-rotating accuracy improved by using two guide rods

Bracket Mounting-

Application Examples

Dust-tight/Water-jet-proof (IP65 Equivalent)

Enclosure: IP65 equivalent
(Refer to page 150.)
Max. stroke: 500 mm*1
*1 For size 32

Water-resistant type For checking the limit and the intermediate signal

* Order the water-resistant 2-color indicator solid state auto switch separately. (Refer to page 174.)

Tubing

* Order the tubing separately.

Vent hole

Reduces internal pressure fluctuations in order to prevent dust and water droplets from entering the device

* Be sure to attach tubing and place the end of the tubing so it is not exposed to dust or water.
For size 63, order a fitting separately.

LEY-X5 (Refer to page 151.)

Step Motor (Servo/24 VDC) Type

Size

25, 32

Servo Motor (24 VDC) Type

Top mounting type

In-line motor type
LEY-X5 (Refer to page 43.)

LEY63 $\square \square \square-\square \mathbf{P}$
(Refer to page 43./Option)

AC Servo Motor (400 w) Type

Step Data Input Type LECP6/LECA6 Series $>\mathrm{p} .189$

Simple setting allows for immediate use!

© "Easy Mode" for simple setting
For immediate use, select "Easy Mode."

Step motor

Servo motor (24 VDC)
LECA6
<When a PC is used> Controller setting software

- Step data setting, test drive, jogging, and move for the constant rate can be set and operated on one screen.

<When a TB (teaching box) is used>
- The simple screen without scrolling promotes ease of setting and operation.
- Choose an icon from the first screen to select a function.
- Set the step data and check the monitor on the second screen.

Example of setting the step data

Example of checking the operation status

The operation status can be checked
Teaching box screen
Data can be set.................................. by inputting
only the position and speed.
(Other conditions are preset.)

Step	Axis 1
Step No.	0
Posn Speed 50.00 mm $200 \mathrm{~mm} / \mathrm{s}$	

Step	Axis 1
Step No.	1
Posn	80.00 mm
Speed	$100 \mathrm{~mm} / \mathrm{s}$

© "Normal Mode" for detailed setting

Select "Normal Mode" when detailed setting is required.

- Step data can be set in detail.
- Signals and terminal status can be monitored
<When a PC is used> Controller setting software
- Step data setting, parameter setting, monitoring, teaching, etc., are displayed in different windows.

<When a TB (teaching box) is used>

- Multiple step data can be stored in the teaching box and transferred to the controller.
- Continuous test drive by up to 5 step data

Teaching box screen

Each function (step data setting, test drive, monitoring, etc.) can be selected from the main menu.

The actuator and controller are provided as a set. (They can be ordered separately as well.)
Confirm that the combination of the controller and actuator is correct.

<Check the following before use.>

(1) Check the actuator label for the model number. This number should match that of the controller.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

Fieldbus Network

Fieldbus-compatible Gateway (GW) Unit

LEC-G Series

Conversion unit for Fieldbus network and LEC serial communication

© Two methods of operation

Step data input: Operate using preset step data in the controller.
Numerical data input: The actuator operates using values such as position and speed from the PLC.
(0) Values such as position and speed can be checked on the PLC.

Programless Type LECP1 Series $\stackrel{\rightharpoonup}{ } 205$

No programming required!

Allows for the setting up of electric actuator operation without using a PC or teaching box

(1) Seting the position number

Set a registered number for the stop position. Max. 14 points

2 Seting the stop position

Move the actuator to the desired stop position using the FORWARD and REVERSE buttons.

3) Registration

Register the stop position using the SET button.

Step motor (Servo/24 VDC) LECP1

Speed/Acceleration 16-level adjustment

Pulse Input Type LECPA Series $\rightarrow \mathrm{p} .212$

This driver uses pulse signals to allow positioning at any position. The actuator can be controlled from the customers' positioning unit.

Return-to-origin command signal

Enables automatic return-to-origin action
With force limit function (Pushing force/Gripping force operation available)
Pushing force/Positioning operation is possible by switching signals.

Function

Item	Step data input type LECP6/LECA6	Programless type LECP1	Pulse input type LECPA
Step data and parameter setting	- Input from controller setting software (PC) - Input from teaching box	- Selected using controller operation buttons	- Input from controller setting software (PC) - Input from teaching box
Step data "position" setting	- Numerical value input from controller setting software (PC) or teaching box - Input numerical value - Direct teaching - JOG teaching	- Direct teaching - JOG teaching	- No "Position" setting required Position and speed set by pulse signal
Number of step data	64 points	14 points	-
Operation command (I/O signal)	Step No. [IN*] input \Rightarrow [DRIVE] input	Step No. [IN*] input only	Pulse signal
Completion signal	[INP] output	[OUT*] output	[INP] output

Setting Items

Item		Contents	Easy Mode		Normal Mode	Step data input type LECP6/LECA6	Pulse input type LECPA	Programless type LECP1*	
		TB	PC	TB/PC					
Step data setting (Excerpt)	Movement MOD		Selection of "absolute position" and "reative position"	\triangle	-	\bigcirc	Set at ABS/INC	No setting required	Fixed value (ABS)
	Speed	Transfer speed	\bigcirc	\bigcirc	\bigcirc	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	Select from 16 levels		
	Position	[Position]: Target position [Pushing]: Pushing start position	-	\bigcirc	\bigcirc	Set in units of 0.01 mm	Direct teaching JOG teaching		
	Acceleration/Deceleration	Acceleration/deceleration during movement	\bigcirc	\bigcirc	\bigcirc	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$	Select from 16 levels		
	Pushing force	Rate of force during pushing operation	\bigcirc	\bigcirc	-	Set in units of 1\%	Set in units of 1\%	Select from 3 levels (weak, medium, and strong)	
	Trigger LV	Target force during pushing operation	\triangle	\bigcirc	-	Set in units of 1\%	Set in units of 1\%	No setting required (same value as pusting force)	
	Pushing speed	Speed during pushing operation	\triangle	\bigcirc	\bigcirc	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	No setting required	
	Moving force	Force during positioning operation	\triangle	\bigcirc	-	Set to 100\%	Setto (Different values for each actuator) \%		
	Area output	Conditions for area output signal to turn ON	\triangle	-	-	Set in units of 0.01 mm	Set in units of 0.01 mm		
	In position	[Position]: Width to the target position [Pushing:: How much it moves during pushing	\triangle	\bigcirc	\bigcirc	Set to 0.5 mm or more (Units: 0.01 mm)	Set to (Different values for each actuator) or more (Units: 0.01 mm)		
Parameter setting (Excerpt)	Stroke (+)	+ side position limit	\times	\times	-	Set in units of 0.01 mm	Set in units of 0.01 mm		
	Stroke (-)	- side position limit	\times	\times	\bigcirc	Set in units of 0.01 mm	Set in units of 0.01 mm		
	ORIG direction	Direction of the return to origin can be set.	\times	\times	-	Compatible	Compatible	Compatible	
	ORIG speed	Speed during return to origin	\times	\times	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$		
	ORIG ACC	Acceleration during return to origin	\times	\times	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$	No setting required	
Test	JOG		-	\bigcirc	\bigcirc	Continuous operation at the set speed can be tested while the switch is being pressed.	Continuous operation at the set speed can be tested while the switch is being pressed.	Hold down the MANUAL button ($(\mathcal{)})$ for uniform sending (speed is a specified value).	
	MOVE		\times	\bigcirc	\bigcirc	Operation at the set distance and speed from the current position can be tested.	Operation at the set distance and speed from the current position can be tested.	Press the MANUAL button $(\curvearrowright)(\vee)$ once for sizing operation (speed and sizing amount are specified values).	
	Return to ORIG		-	\bigcirc	\bigcirc	Compatible	Compatible	Compatible	
	Test drive	Operation of the specified step data	\bigcirc	-	(Continuous operation)	Compatible	Not compatible	Compatible	
	Forced output	ON/OFF of the output terminal can be tested.	\times	\times	\bigcirc	Compatible	Compatible	Not compatible	
Monitor	DRV mon	Current position, speed, force, and the specified step data can be monitored.	\bigcirc	\bigcirc	\bigcirc	Compatible	Compatible		
	In/Out mon	Current ON/OFF status of the input and output terminal can be monitored.	\times	\times	\bigcirc	Compatible	Compatible		
ALM	Status	Alarm currently being generated can be confirmed.	\bigcirc	\bigcirc	-	Compatible	Compatible	Compatible (display alarm group)	
	ALM Log record	Alarms generated in the past can be conitirmed.	\times	\times	\bigcirc	Compatible	Compatible	Not compatible	
File	Save/Load	Step data and parameters can be saved, forwarded, and deleted.	\times	\times	\bigcirc	Compatible	Compatible		
Other	Language	Can be changed to Japanese or English	-	-	\bigcirc	Compatible	Compatible		

\triangle : Can be set from TB Ver. 2.** (The version information is displayed on the initial screen.)
*1 The LECP1 programless type cannot be used with the teaching box and controller setting kit.

Fieldbus Network

CC-Link Direct Input Type Step Motor Controller LECPMJ Series

©CC-Link Ver. 1.10 compliant
© External data import function
The step data can be rewritten temporarily by feeding back external information to the PLC. 64 or more data points can be defined with the 3 data import modes.

Operation example: The opening width of the electric gripper is changed appropriately according to the measurements taken by the imaging camera.

3 data import modes

Single numeric parameter (Number of occupied stations: 1) Movement MOD (movement mode) and another parameter item are changed.
Half numeric parameters (Number of occupied stations: 2) Up to 6 parameter items are changed at once.
Full numeric parameters (Number of occupied stations: 4) Up to 12 parameter items are changed at once.

Position and speed can be monitored by the PLC touch panel (display).

Step data can be edited from the PLC touch panel (display). Except in the case of the single numeric parameter)

Fieldbus Network

EtherCAT ${ }^{\circledR} / E t h e r N e t / P^{\text {™ }} / P R O F I N E T / ~$ DeviceNet ${ }^{\text {TM } / I O-L i n k ~ D i r e c t ~ I n p u t ~ T y p e ~}$ Step Motor Controller/JXC \square Series $\boldsymbol{\square}$. 230

© IO-Link EtherCATo
Step no. defined operation: Operate using the preset step data in the controller.
Numerical data defined operation: The actuator operates using values such as position and speed from the PLC.

Numerical monitoring available

Numerical information, such as the current speed, current position, and alarm codes, can be monitored on the PLC.

Devicenct

Etheri'et/IP

OTransition wiring of communication cables
Two communication ports are provided.

* For the DeviceNet ${ }^{\top M}$ type, transition wiring is possible using a branch connector.
* 1 to 1 in the case of IO-Link

Application

PLC
Both air and electric systems can be established under the same protocol.

Communication protocols

Can beadditionally installed in anexisiting network

Multi-Axis Step Motor Controller

Speed tuning control ${ }^{* 1}$
(3 Axes: JXC92 4 Axes: JXC73/83/93)
Linear/circular interpolation

Circular interpolation

Positioning/pushing operation Step data input (Max. 2048 points) Space saving, reduced wiring Absolute/relative position coordinate instructions
*1 This controls the speed of the following axis when the speed of the primary axis drops due to the effects of an external force and when a speed difference with the following axis occurs. This control is not for synchronizing the position of the primary axis and following axis.

For 3 Axes JXC92 Series

- Etheri ${ }^{\prime}$ et/IP Type

Width: Approx. 38\% reduction

JXC92

For 4 Axes JXC73/83/93 Series

- Parallel I/O/ Etherivet/IP Type Width: Approx. 18\% reduction

JXC73/83

Step Data Input: Max. 2048 points

For 3 Axes 3-axis operation can be set collectively in one step.

Step	Axis	Movement mode	Speed	Position	Acceleration	Deceleration	Pushing force	Trigger LV	Pushing speed	Moving force	Area 1	Area 2	In position	Comments
			mm / s	mm	$\mathrm{mm} / \mathrm{s}^{2}$	$\mathrm{mm} / \mathrm{s}^{2}$					mm	mm	mm	
0	Axis 1	ABS	500	100.00	3000	3000	0	85.0	50	100.0	10.0	30.0	0.5	
	Axis 2	ABS	500	100.00	3000	3000	0	85.0	50	100.0	10.0	30.0	0.5	
	Axis 3	ABS	500	100.00	3000	3000	0	85.0	50	100.0	10.0	30.0	0.5	
1	Axis 1	INC	500	200.00	3000	3000	0	85.0	50	100.0	0	0	0.5	
	Axis 2	INC	500	200.00	3000	3000	0	85.0	50	100.0	0	0	0.5	
	Axis 3	INC	500	200.00	3000	3000	0	85.0	50	100.0	0	0	0.5	
!	!		+	!	+	!	!	+	+	+	+	+	+	
2046	Axis 1	SYN-I	500	100.00	3000	3000	0	0	0	100.0	0	0	0.5	
	Axis 2	SYN-I	0	0.00	0	0	0	0	0	100.0	0	0	0.5	
	Axis 3	SYN-I	0	0.00	0	0	0	0	0	100.0	0	0	0.5	
2047	Axis 1	CIR-R	500	0.00	3000	3000	0	0	0	100.0	0	0	0.5	
	Axis 2	CIR-R	0	50.00	0	0	0	0	0	100.0	0	0	0.5	
	Axis 3*1		0	0.00	0	0	0	0	0	100.0	0	0	0.5	
	Axis 4*1		0	25.00	0	0	0	0	0	100.0	0	0	0.5	

*1 When circular interpolation (CIR-R, CIR-L, CIR-3) is selected in the movement mode, input the X and Y coordinates in the rotation center position or input the X and Y coordinates in the passing position.

Movement mode	Pushing operation	
Blank	\times	Invalid data (Invalid process)
ABS	O	Moves to the absolute coordinate position based on the origin of the actuator
INC	\times	Moves to the relative coordinate position based on the current position
LIN-A	\times	Moves to the absolute coordinate position based on the origin of the actuator by linear interpolation
LIN-I	\times	Moves to the relative coordinate position based on the current position by linear interpolation
CIR-R*2	\timesWith Axis 1 assigned to the X-axis and Axis 2 to the Y-axis, it moves in the clockwise direction by circular interpolation. The target position and rotation center position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis 3*1: Rotation center position X Axis 4*1: Rotation center position Y	
CIR-L*2	With Axis 1 assigned to the X-axis and Axis 2 to the Y-axis, it moves in the counter-clockwise direction by circular interpolation. The target position and rotation center position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis 3*1: Rotation center position X Axis 4*1: Rotation center position Y	
SYN-I	\times	Moves to the relative coordinate position based on the current position by speed tuning control*3
CIR-3*2	With Axis 1 assigned to the X-axis and Axis 2 to the Y-axis, it moves based on the three specified points by circular interpolation. The target position and passing position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis 3*1: Passing position X Axis 4*1: Passing position Y	

*2 Performs a circular operation on a plane using Axis 1 and Axis 2
*3 This controls the speed of the following axis when the speed of the primary axis drops due to the effects of an external force and when a speed difference with the following axis occurs. This control is not for synchronizing the position of the primary axis and following axis.

4-axis operation can be set collectively in one step.

Step	Axis	Movemen mode	Speed	Position	Acceleration	Deceleration	Positioning/ Pushing	Area 1	Area 2	In position	Comments
			mm/s	mm	$\mathrm{mm} / \mathrm{s}^{2}$	$\mathrm{mm} / \mathrm{s}^{2}$		mm	mm	mm	
0	Axis 1	ABS	100	200.00	1000	1000	0	6.0	12.0	0.5	
	Axis 2	ABS	50	100.00	1000	1000	0	6.0	12.0	0.5	
	Axis 3	ABS	50	100.00	1000	1000	0	6.0	12.0	0.5	
	Axis 4	ABS	50	100.00	1000	1000	0	6.0	12.0	0.5	
1	Axis 1	INC	500	250.00	1000	1000	1	0	0	20.0	
	Axis 2	INC	500	250.00	1000	1000	1	0	0	20.0	
	Axis 3	INC	500	250.00	1000	1000	1	0	0	20.0	
	Axis 4	INC	500	250.00	1000	1000	1	0	0	20.0	
	!		,	+	!	+	,	+	+	+	
2046	Axis 4	ABS	200	700	500	500	0	0	0	0.5	
2047	Axis 1	ABS	500	0.00	3000	3000	0	0	0	0.5	
	Axis 2	ABS	500	0.00	3000	3000	0	0	0	0.5	
	Axis 3	ABS	500	0.00	3000	3000	0	0	0	0.5	
	Axis 4	ABS	500	0.00	3000	3000	0	0	0	0.5	
Movement m	Pushin	operation	Details								
Blank			Invalid data (Invalid process)								
ABS			Moves to the absolute coordinate position based on the origin of the actuator								
INC			Moves to the relative coordinate position based on the current position								
LIN-A			Moves to the absolute coordinate position based on the origin of the actuator by linear interpolation								
LIN-I			Moves to the relative coordinate position based on the current position by linear interpolation								
CIR-R**	$\times \quad$A A A 		With Axis 1 assigned to the X -axis and Axis 2 to the Y -axis, it moves in the clockwise direction by circular interpolation. The target position and rotation center position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis 3: Rotation center position X Axis 4: Rotation center position Y								
CIR-L*1	$\times \quad \|$A A A 		With Axis 1 assigned to the X -axis and Axis 2 to the Y -axis, it moves in the counter-clockwise direction by circular interpolation. The target position and rotation center position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis 3: Rotation center position X Axis 4: Rotation center position Y								
SYN-I	\times		Moves to the relative coordinate position based on the current position by speed tuning contro**2								

*1 Performs a circular operation on a plane using Axis 1 and Axis 2
*2 This controls the speed of the following axis when the speed of the primary axis drops due to the effects of an external force and when a speed difference with the following axis occurs. This control is not for synchronizing the position of the primary axis and following axis.

Controller Setting Software (Connection with a PC)

Easy file management

Load	T
Save	T
Upload	T
Download	T

The step data is loaded from the file.
The step data is saved in a file.
The step data is loaded from the controller.
The step data is written in the controller.
Abundant edit functions

Copy	The selected step data is copied to the clipboard.
Delete	The selected step data is deleted.
Cut	The selected step data is cut.
Paste (Insert)	The step data copied to the clipboard is inserted into the cursor's position.
Paste (Overwrite)	The step data copied to the clipboard overwrites the data at the cursor position.
Insert	A blank line is inserted in the selected step data line.

Operation confirmation of entered step data

연	Enter the step number to be executed.
Stop	Executes the specified step number.
All axes return to origin	Displays whether the step number is being executed or stopped.

Step data window

System Construction/General Purpose I/O

System Construction/Fieldbus Network

System Construction/Pulse Signal

System Construction/Fieldbus Network (CC-Link Direct Input Type)

System Construction/Fieldbus Network (EtherCAT $/$ /EtherNetIPTM/PROFINET/DeviceNet ${ }^{\text {TM }} /$ IO-Link Direct Input Type)

[^0]
System Construction/EtherNet/IP ${ }^{\text {T }}$ Type (JXC92)

System Construction/Parallel I/O (JXC73/83)

System Construction/EtherNet/IP ${ }^{\text {Tu }}$ Type (JXC93)

AC Servo Motor Driver

LECS $\square / L E C S \square$-T/LECY \square Series List

Series		Compatible motor			Control method			Application/ Function		Compatible option
		100 W	200 W	400 W	Positioning ${ }^{* 1}$	Pulse	Network direct input	Synchronous	Pushing operation*4	Setup software
	LECSA (Pulse input type/ Positioning type)				Up to 7 points					LEC-MRC2
	LECSB (Pulse input type)									LEC-MRC2
	CC-Link LECSC (CC-Link direct input type)				Up to 255 points		CC-Link Ver.1.10			LEC-MRC2
	SSSCNETIII LECSS (SSCNETIII type) Compatible with Mitsubishi Electric's servo system controller network						SSCNETIII			LEC-MRC2
	LECSB-T (Pulse input type/ Positioning type)				Up to 255 points					LEC-MRC2
	CC-Link LECSC-T (CC-Link direct input type)				Up to 255 points		CC-Link Ver.1.10			LEC-MRC2
	SSCNETIII/H LECSS-T (SSCNETIII/H type) Compatible with Mitsubishi Electric's servo system controller network						SSCNETIIH			LEC-MRC2
	MECHATROLINK-II LECYM						MECHATRO LINK-II			SigmaWin $+{ }^{\text {TM }}$
	MECHATROLINK-III LECYU						MECHATRO LINK-II			SigmaWin+ ${ }^{\text {TM }}$

*1 For positioning types, the settings need to be changed in order to use the max. set values. Setup software (MR Configurator2 ${ }^{\text {TM }}$) LEC-MRC2 is required.
*2 Available when a Mitsubishi motion controller is used as the master
*3 Available when a motion controller is used as the master
*4 The LECSB2-T is only applicable when the control method is positioning. The point table is used to set the pushing operation settings.
To set the pushing operation settings, an additional dedicated file (pushing operation extension file) must be downloaded separately to be used with the setup software (MR Configurator2 ${ }^{\text {TM }}$: LEC-MRC2 \square). Please download this dedicated file from the SMC website: https://www.smcworld.com/ When selecting the LECSS or LECSS2-T, combine it with a master station (such as the Simple Motion module manufactured by Mitsubishi Electric Corporation) which has a pushing operation function.

* For customer-provided PLC and motion controller setting and usage instructions, confirm with the retailer or manufacturer.

Gain adjustment using auto tuning

Auto-tuning function

- Controls the difference between the command value and the actual action

Vibration suppression control function

- Automatically suppresses low-frequency machine vibrations (1 to 100 Hz)

AC Servo Motor Driver

With display setting function

 occupied station count.

(With the front cover opened) LECSB

(With the front cover opened) LECSS

(With the front cover opened)
LECSC-T

LECYU

System Construction

System Construction

System Construction

System Construction

Absolute encoder compatible LECYU Series III MECHATROLINK-III type

Provided by the customer

Power supply
Single phase 200 to 230 VAC $(50 / 60 \mathrm{~Hz})$
Three phase 200 to 230 VAC $(50 / 60 \mathrm{~Hz})$

Provided by the customer

External
regenerative resistor
p. 280

* If an external regenerative resistor is required, it should be provided by the customer. For external regenerative resistor selection, refer to the compatible actuator catalog.

Driver

* Order the USB cable (Part no.: LEC-JZ-CVUSB) separately to use this software.

SMC Electric Actuator

Slider Type Step Motor (Sevo/24 VDC) Servo Motor (24 VDC)

Ball screw drive LEFS Series\square			Belt drive LEFB Series			Ball screw drive LEFS Series			Belt drive LEFB Series		
						Clean ro	mpatiole				
LEFS Series			LEFB Series			LEFS Series			LEFB Series		
Size	Max. work load [kg]	Stroke [mm]	Size	Max. work load [kg]	Stroke [mm]	Size	Max. work load [kg]	Stroke [mm]	Size	Max. work load [kg]	Stroke [mm]
16	15	Up to 500	16	1	Up to 1000	25	20	Up to 800	25	5	Up to 2000
25	30	Up to 800	25	10	Up to 2000	32	45	Up to 1000	32	15	Up to 2500
32	50	Up to 1000	32	19	Up to 2000	40	60	Up to 1200	40	25	Up to 3000
40	65	Up to 1200									

High Rigidity Slider Type AC Servo Motor

Guide Rod Slider Step Motor (Servo/24 vDC)

Low Profile Slider Type (Step Motor (Senor/24VDCC)

SMC Electric Actuator

Slide Table Step Motor (Servo/24 VDC) Servo Motor (24 VDC)

LES Series

Basic type/R type

LESH Series
Basic type/R type
LESH $\square R$ Series

Size	Max. work load $[\mathbf{k g}]$	Stroke $[\mathbf{m m}]$
$\mathbf{8}$	2	50,75
$\mathbf{1 6}$	6	50,100
$\mathbf{2 5}$	9	50,100 150

Symmetrical type/L type
LESH $\square L$ Series

In-line motor type/D type
LESH $\square D$ Series

Rotary Table Step Motor (Servo/24 VDC)

Basic type LER Series		High-precision type LERH Series		
Size	Rotating torque [$\mathrm{N} \cdot \mathrm{m}$]		Max. speed [$1 /$ s]	
	Basic	High torque	Basic	High torque
10	0.2	0.3		
30	0.8	1.2	420	280
50	6.6	10		

SMC Electric Actuator

Multi-Axis Controller

Electric Actuator/Rod Type LEY Series

Step Motor (Servo/24 VDC) Servo Motor (24 VDC)
ORod Type LEY Series
Model Selection p. 37
How to Order p. 57
Specifications p. 61
Construction p. 63
Dimensions p. 65
Accessory Mounting Brackets p. 99
AC Servo Motor
LECS \square series
©Rod Type LEY Series Size 25,32
Model Selection p. 43
How to Order p. 71
Specifications p. 73
Construction p. 75
Dimensions p. 76
©Rod Type LEY Series Size 63
Dust-tightWaterjet-proof (IP65 Equivalent) *ption
Model Selection p. 43
How to Order p. 81
Specifications p. 82
Construction p. 83
Dimensions p. 84
$L E C Y \square$ Series
ORod Type LEY Series
Model Selection p. 50
How to Order p. 89
Specifications p. 91
Construction p. 93
Dimensions p. 94
Auto Switch p. 100-1

Electric Actuator/Guide Rod Type LEYG Series

Step Motor (Servo/24 VDC) Servo Motor (24 VDC)
©Guide Rod Type LEYG Series
Model Selection p. 105
How to Order p. 121
Specifications p. 125
Construction p. 127
Dimensions p. 129
Support Block p. 133
AC Servo Motor
LECS \square series
©Guide Rod Type LEYG Series
Model Selection p. 111
How to Order p. 137
Specifications p. 138
Dimensions p. 139
Support Block p. 141
©Guide Rod Type LEYG Series
Model Selection p. 116
How to Order p. 143
Specifications p. 146
Dimensions p. 147
Support Block p. 149

Environment

OStep Motor (Servo/24 VDC)/ Servo Motor (24 VDC) Controller

Step Data Input Type/LECP6/LECA6 Series p. 189	
Communication Cable for Controller Setting/LEC-W2A	p. 198
Teaching Box/LEC-T1	p. 199
Gateway Unit/LEC-G Series	p. 201
Programless Controller/LECP1 Series	p. 205
Step Motor Driver/LECPA Series	p. 212
Communication Cable for Controller Setting/LEC-W2A	p. 219
Teaching Box/LEC-T1	p. 220
CC-Link Direct Input Type/LECPMJ Series	p. 222
Communication Cable for Controller Setting/LEC-W2A	. 227
Teaching Box/LEC-T1	p. 228
EtherCAT ${ }^{\text {®//EtherNet/IPTM/PROFINET/DeviceNet }}$ +TM/IO-Link	
Direct Input Type/JXCE1/91/P1/D1/L1 Series	p. 230
Controller Setting Kit/JXC-W2	p. 235
Teaching Box/LEC-T1	p. 237

Communication Cable for Controller Setting/LEC-W2A
p. 109Teaching Box/LEC-T1
p. 201
Prograns Contrilerlicelp. 212
Communication Cable for Controller Setting/LEC-W2A p. 210CC-Link Direct Input Type/LECPMJ Seriesp. 222
p. 22Teaching Box/LEC-T1Direct Input Type/JXCE1/91/P1/D1/L1 Seriesp. 230Teaching Box/LEC-T1p. 237
©3-Axis Step Motor (Servo/24 VDC) Controller
EtherNet/IPTM Type/JXC92 Series p. 239
© 4 -Axis Step Motor (Servo/24 VDC) ControllerParallel I/O Type/JXC73/83 Seriesp. 241
EtherNet/IPTM Type/JXC93 Series p. 241

©AC Servo Motor Driver
LECSA/LECSB/
LECSC/LECSS Series .. p. 256
LECSS-T Series .. p. 256
LECYM/LECYU Series ... p. 277

Selection Procedure

Positioning Control Selection Procedure

Check the work load-speed. (Vertical transfer)

Step 2 Check the cycle time.

Selection Example

Operating conditions

| - Workpiece mass: $4[\mathrm{~kg}] \quad$ •Speed: $100[\mathrm{~mm} / \mathrm{s}]$ |
| :--- | :--- | :--- |
| - Acceleration/Deceleration: $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ |

Check the work load-speed. <Speed-Vertical work load graph>
Select the target model based on the workpiece mass and speed with reference to the <Speed-Vertical work load graph>.
Selection example) The LEY16B is temporarily selected based on the graph shown on the right side.

* It is necessary to mount a guide outside the actuator when used for horizontal transfer. When selecting the target model, refer to the horizontal work load in the specifications

<Speed-Vertical work load graph> (LEY16/Step motor)

Step 2

Check the cycle time.

Calculate the cycle time using the following calculation method.

- Cycle time T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$
-T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]$
-T2: Constant speed time can be found from the following equation.
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{s}]$
-T4: Settling time varies depending on the conditions such as motor types, load and in position of the step data. Therefore, calculate the settling time with reference to the following value.
$\mathrm{T} 4=0.2[\mathrm{~s}]$
Calculation example)
T1 to T4 can be calculated as follows.

L : Stroke [mm] \cdots (Operating condition)
V : Speed [mm/s] ... (Operating condition)
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
T1: Acceleration time [s] ... Time until reaching the set speed T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed
T3: Deceleration time [s] ... Time from the beginning of the constant speed operation to stop
T4: Settling time [s] ... Time until positioning is completed
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=100 / 3000=0.033[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=100 / 3000=0.033[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{200-0.5 \cdot 100 \cdot(0.033+0.033)}{100}=1.97[\mathrm{~s}]$
$\mathrm{T} 4=0.2[\mathrm{~s}]$
Therefore, the cycle time can be obtained as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.033+1.967+0.033+0.2=2.233[\mathbf{s}]$

Selection Procedure

Pushing Control Selection Procedure

The duty ratio is a ratio of the operation time in one cycle.

Selection Example

Operating conditions

\bullet Mounting condition: Horizontal (pushing)	\bullet Duty ratio: $20[\%]$
\bullet-Jig weight: $0.2[\mathrm{~kg}]$	\bullet Speed: $100[\mathrm{~mm} / \mathrm{s}]$
\bullet Pushing force: $60[\mathrm{~N}]$	\bullet Stroke: $200[\mathrm{~mm}]$

Check the duty ratio.

<Conversion table of pushing force-duty ratio>
Select the [Pushing force] from the duty ratio with reference to the <Conversion table of pushing force-duty ratio>.
Selection example)
Based on the table below,
-Duty ratio: 20 [\%]
Therefore, the set value of pushing force will be 70 [\%].
<Conversion table of pushing force-duty ratio>
(LEY16/Step motor)

Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]
40 or less	100	-
50	70	12
70	20	1.3
85	15	0.8

* [Set value of pushing force] is one of the step data input to the controller.
* [Continuous pushing time] is the time that the actuator can continuously keep pushing.

Step 2 Check the pushing force. <Force conversion graph>
Select the target model based on the set value of pushing force and force with reference to the <Force conversion graph>.
Selection example)
Based on the graph shown on the right side,

- Set value of pushing force: 70 [\%]
-Pushing force: 60 [N]
Therefore, the LEY16B is temporarily selected.

Step 3 Check the lateral load on the rod end.

<Graph of allowable lateral load on the rod end>
Confirm the allowable lateral load on the rod end of the actuator:
LEY16 \square, which has been selected temporarily with reference to the
<Graph of allowable lateral load on the rod end>.
Selection example)
Based on the graph shown on the right side,
\bullet Jig weight: $0.2[\mathrm{~kg}] \approx 2[\mathrm{~N}]$

- Product stroke: 200 [mm]

Therefore, the lateral load on the rod end is in the allowable range.

Based on the above calculation result, the LEY16B-200 is selected.

<Graph of allowable lateral load on the rod end>

 *1 Set values for the controller.

LEY/25A-LEY Series

Step Motor (Servo/24 VDC)

Speed-Work Load Graph (Guide)

Refer to page 40 for the LECPA, JXC \square_{3}^{2} and page 41 for the LECA6.

For Step Motor (Servo/24 VDC) LECP6, LECP1, LECPMJ, JXC $\square 1$

Horizontal

LEY25 \square

LEY32 \square

LEY40 \square

Vertical

LEY16 \square

LEY25 \square

LEY32 \square

LEY40 \square

Refer to page 39 for the LECP6, LECP1,
For Step Motor (Servo/24 VDC) LECPA, JXC \square_{3}^{2}

Horizontal

LEY25 \square
Z \backslash for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY32 \square
$\square \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY40 \square

LEY25 \square

LEY32 \square

LEY40 \square

LEY/25A-LEY Series

Speed-Work Load Graph (Guide)
 For Servo Motor (24 VDC) LECA6

Refer to page 39 for the LECP6, LECP1, LECPMJ, $J X C \square 1$ and page 40 for the LECPA, JXC $\square \frac{2}{3}$.

Horizontal

LEY16 \square A

LEY25 \square A

Vertical

LEY16 \square A

LEY25 \square A

Graph of Allowable Lateral Load on the Rod End (Guide)

[Stroke] $=$ [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

Rod Displacement: δ [mm]

Size Stroke	30	50	100	150	200	250	300	350	400	450	500
$\mathbf{1 6}$	± 0.4	± 0.5	± 0.9	± 0.8	± 1.1	± 1.3	± 1.5	-	-	-	-
$\mathbf{2 5}$	± 0.3	± 0.4	± 0.7	± 0.7	± 0.9	± 1.1	± 1.3	± 1.5	± 1.7	-	-
$\mathbf{3 2 , 4 0}$	± 0.3	± 0.4	± 0.7	± 0.6	± 0.8	± 1.0	± 1.1	± 1.3	± 1.5	± 1.7	± 1.8

Non-rotating Accuracy of Rod

Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod.
This may cause the deformation of the non-rotating guide, abnormal auto switch responses, play in the internal guide, or an increase in the sliding resistance.

Force Conversion Graph (Guide)

Step Motor (Servo/24 VDC)

LEY16

Ambient temperature	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]

$\mathbf{2 5}{ }^{\circ} \mathbf{C}$ or less	85 or less	100	-
}\mathbf{C}	40 or less	100	-
	50	70	12
	70	20	1.3
	85	15	0.8

LEY25

| Ambient temperature | Set value of pushing force [\%] | Duty ratio [\%] | Continuous pusshing time [minute]] |
| :--- | :--- | :--- | :--- | | $40^{\circ} \mathrm{C}$ or less | 65 or less |
| :--- | :--- |

LEY32

Ambient temperature	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]]
$\mathbf{2 5} 5^{\circ} \mathbf{C}$ or less	85 or less	100	-
$\mathbf{4 0}^{\circ} \mathbf{C}$	65 or less	100	-
	85	50	15

LEY40

Ambient temperature	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute],
$40^{\circ} \mathrm{C}$			

65 or less
*1 Set values for the controller

Servo Motor (24 VDC)

LEY16 \square A

Ambient temperature	Set value of pushing force [\%]]	Duty ratio [\%]	Continuous pushing time [minute]
$40^{\circ} \mathrm{C}$ or less			

LEY25 \square A

Ambient temperature	Set value of pushing force $[\%]$	Duty ratio $[\%]$	Continuous pushing time [minute]					
$40^{\circ} \mathrm{C}$ or less	95 or less	100	-		$\mathbf{4 0} \mathbf{C}$ or less	95 or less	100	-
:---:	:---:	:---:	:---:					

<Limit Values for Pushing Force and Trigger Level in Relation to Pushing Speed> Without Load

Model	Lead	Pushing speed [mm/s]	Pushing force (Setting input value)	Model	Lead	Pushing speed [mm / s]	Pushing force (Setting input value)
LEY16	A/B/C	21 to 50	60 to 85\%	LEY16■A	A/B/C	21 to 50	80 to 95\%
LEY25	A/B/C	21 to 35	50 to 65\%	LEY25■A	A/B/C	21 to 35	80 to 95\%
LEY32	A	24 to 30	60 to 85\%				
	B/C	21 to 30					
LEY40	A	24 to 30	50 to 65\%				
	B/C	21 to 30					

There is a limit to the pushing force in relation to the pushing speed. If the product is operated outside of the range (low pushing force), the completion signal [INP] may be output before the pushing operation has been completed (during the moving operation). If operating with the pushing speed below the min. speed, please check for operating problems before using the product.
<Set Values for Vertical Upward Transfer Pushing Operations>
For vertical loads (upward), set the pushing force to the max. value shown below and operate at the work load or less.

Model	LEY16 \square			LEY25			LEY32 \square			LEY40 \square			LEY16 \square			LEY25 $\mathrm{A}^{\text {A }}$		
Lead	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C
Work load [kg]	1	1.5	3	2.5	5	10	4.5	9	18	7	14	28	1	1.5	3	1.2	2.5	5
Pushing force		85\%			6\%			85\%			65\%			95\%			95	

Electric Actuator/Rod Type

LEY/LEY-X5/25A-LEY Series Dust-tightWater-jet-proof (IP65 Equivalent) Secondary Battery Compatible
Model Selection ${ }_{25,32,63}$
LEY Series $>$ p. 71, 81 LECY \square Series $>$ p. 89
LEY-X5 Series \downarrow p. 163 25A-LEY Series $>p .179$

Selection Procedure

Positioning Control Selection Procedure

Selection Example

Operating conditions	-Workpiece mass: 16 [kg] •Speed: 300 [mm/s] - Acceleration/Deceleration: 5000 [$\mathrm{mm} / \mathrm{s}^{2}$] - Stroke: 300 [mm] -Workpiece mounting condition: Vertical upward downward transfer	

Check the work load-speed. <Speed-Vertical work load graph>
Select the target model based on the workpiece mass and speed with reference to the <Speed-Vertical work load graph>.
Selection example) The LEY25B is temporarily selected based on the graph shown on the right side.

* It is necessary to mount a guide outside the actuator when used for horizontal transfer. When selecting the target model, refer to the horizontal work load in the specifications

<Speed-Vertical work load graph>
(LEY25) on pages $73,74,82,91,92$, and 164 and the precautions.
The regeneration option may be necessary. Refer to pages 45 and 46 for "Required Conditions for Regeneration Option."
Check the cycle time.
Calculate the cycle time using the following calculation method. - Cycle time T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the motor type and load. The value below is recommended.

$$
\mathrm{T} 4=0.05[\mathrm{~s}]
$$

Calculation example)

L : Stroke [mm] \cdots (Operating condition)
V : Speed [mm/s] \cdots (Operating condition)
a1: Acceleration [mm/s²] \cdots (Operating condition)
a2: Deceleration [mm/s²] \cdots (Operating condition)
T1: Acceleration time [s] ... Time until reaching the set speed T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed
T3: Deceleration time [s] ... Time from the beginning of the constant speed operation to stop
T4: Settling time [s] ... Time until positioning is completed

T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=300 / 5000=0.06[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=300 / 5000=0.06[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{300-0.5 \cdot 300 \cdot(0.06+0.06)}{300}=0.94[\mathrm{~s}]$
$\mathrm{T} 4=0.05$ [s]
Therefore, the cycle time can be obtained as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.06+0.94+0.06+0.05=1.11[\mathrm{~s}]$

Selection Procedure

Force Control Selection Procedure

* The duty ratio is a ratio of the operation time in one cycle.

Selection Example

Operating conditions

- Mounting condition: Horizontal (pushing)	-Duty ratio: $60[\%]$
- Jig weight: $0.5[\mathrm{~kg}]$	-Speed: $100[\mathrm{~mm} / \mathrm{s}]$
- Force: $255[\mathrm{~N}]$	-Stroke: $300[\mathrm{~mm}]$

Check the duty ratio.
<Conversion table of force-duty ratio>
Select the [Force] from the duty ratio with reference to the <Conversion table of force-duty ratio>.

Selection example)
Based on the table below,

- Duty ratio: 60 [\%]

Therefore, Torque limit/Command value will be 30 [\%].
<Conversion table of force-duty ratio>
(LEY25/AC Servo motor)

Torque limit/ Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
25 or less	100	-
30	60	1.5

* [Torque limit/Command value [\%]] is the set value for the driver.
* [Continuous pushing time] is the time that the actuator can continuously keep pushing

Step 2

Check the force. <Force conversion graph>

Select the target model based on the torque limit/command value and pushing force with reference to the <Force conversion graph>.

Selection example)
Based on the graph shown on the right side,

- Torque limit/Command value: 30 [\%]
- Force: 255 [N]

Therefore, the LEY25B is temporarily selected.

<Force conversion graph> (LEY25)

<Graph of allowable lateral load on the rod end>

Check the lateral load on the rod end.
<Graph of allowable lateral load on the rod end>
Confirm the allowable lateral load on the rod end of the actuator: LEY25B, which has been selected temporarily with reference to the <Graph of allowable lateral load on the rod end>.
Selection example)
Based on the graph shown on the right side,
\bullet - Jig weight: $0.5[\mathrm{~kg}] \sim 5[\mathrm{~N}]$

- Product stroke: 300 [mm]

Therefore, the lateral load on the rod end is in the allowable range.

Based on the above calculation result, the LEY25S2B-300 is selected.

Speed-Vertical Work Load Graph/Required Conditions for "Regeneration Option"

LEY25 $\square \mathrm{S}_{6}^{2} / \mathrm{T} 6$ (Motor mounting position: Top/Parallel, In-line)

LEY32 $\square \mathrm{S}_{7}^{3} / 77$ (Motor mounting position: Top/Parallel)

LEY63 $\square S_{8}^{4} /$ / 8 (Motor mounting position: Top/Parallel, In-line)

Required conditions for "Regeneration option"

* Regeneration option is required when using product above regeneration line in graph. (Order separately.)
"Regeneration Option" Models

Size	Model
LEY25 \square	LEC-MR-RB-032
LEY32 \square	LEC-MR-RB-032
LEY63 \square	LEC-MR-RB-12

LEY32DS ${ }_{7}^{3} / T 7$ (Motor mounting position: In-line)

Speed-Horizontal Work Load Graph/Required Conditions for "Regeneration Option"

LEY25 $\square \mathbf{S}_{6}^{2} / \mathrm{T6}$ (Motor mounting position: Top/Parallel, In-line)

LEY32 $\square \mathbf{S}_{7}^{3} /$ T7 (Motor mounting position: Top/Parallel)

LEY63 $\square S_{8}^{4} /$ T8 (Motor mounting position: Top/Parallel, In-line)

Required conditions for "Regeneration option"
Regeneration option is required when using product above regeneration line in graph. (Order separately.)
"Regeneration Option" Models

Size	Model
LEY25 \square	LEC-MR-RB-032
LEY32 \square	LEC-MR-RB-032
LEY63 \square	-

LEY32DS ${ }_{7}^{3} / T 7$ (Motor mounting position: In-line)

Allowable Stroke Speed

Model	AC servo motor	Lead		Stroke [mm]													
		Symbol	[mm]	30	50	100	150	200	250	300	350	400	450	500	600	700	800
LEY25 $\square \mathbf{S}_{6}^{2} / \mathrm{T} 6$ $\binom{$ Motor mounting position: }{ Top/Parallel, In-line }	$\begin{aligned} & 100 \mathrm{~W} \\ & \square 40 \end{aligned}$	A	12	900							600		-	-	-		
		B	6				450				30		-	-		-	
		C	3				225						-	-		-	
		(Motor rotation speed)		(4500 rpm)							(3000	rpm)	-800		-		
$\begin{gathered} \text { LEY32 } \square \mathbf{S}_{7}^{3} / \text { T7 } \\ \binom{\text { Motor mounting position: }}{\text { Top/Parallel }} \end{gathered}$	$\begin{gathered} 200 \mathrm{~W} \\ \square \square 60 \end{gathered}$	A	20	1200												-	
		B	10	600									400		-		
		C	5	300									200		-		
		(Motor rotation speed)		(3600 rpm)									(2400 rpm)		-		
$\begin{gathered} \text { LEY32DS } 3 / \text { T7 } \\ \binom{\text { Motor mounting position: }}{\text { In-line }} \end{gathered}$	$\begin{gathered} 200 \mathrm{~W} \\ \square \square 60 \end{gathered}$	A	16	1000									640		-		
		B	8	500									320		-		
		C	4	250									160		-		
		(Motor rotation speed)		(3750 rpm)									(2400 rpm)		-		
LEY63 $\square \mathrm{S}_{8}^{4} / \mathrm{T} 8$ (Motor mounting position:) Top/Parallel, In-line	$\begin{gathered} 400 \mathrm{~W} \\ \square \square 60 \end{gathered}$	A	20	1000											800	600	500
		B	10	500											400	300	250
		C	5	250											200	150	125
		(Motor rotation speed)		(3000 rpm)											(2400 rpm) (1800 rpm)		(1500 rpm)
		L*1	2.86	70													
		(Motor rotation speed)		(1470 rpm)													

[^1]
LEY/LEY-X5/25A-LEY Series

AC Servo Motor
Size 25, 32, 63
Dust-tight/Water-jet-proof (IP65 Equivalent)
Secondary Battery Compatible

Force Conversion Graph (Guide)
 For LECSA, LECSB, LECSC, LECSS

LEY25 $\square \mathbf{S}_{6}^{2}$ (Motor mounting position: Top/Parallel, In-line)

LEY32 $\square \mathbf{S}_{7}^{3}$ (Motor mounting position: Top/Parallel)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
25 or less	100	-
30	60	1.5

LEY63 $\square \mathbf{S}_{8}^{4}$ (Motor mounting position: Top/Parallel, In-line)

LEY32DS ${ }_{7}^{3}$ (Motor mounting position: In-line)

Model Selection LEY/LEY-X5/25A-LEY Series
 size 25, 32, 63
 Dust-tight/Water-jet-proof (IP65 Equivalent)
 Secondary Battery Compatible

 AC Servo Motor
Force Conversion Graph (Guide)

For LECSS-T

LEY25 \square T6 (Motor mounting position: Top/Parallel, In-line)

LEY32 \square T7 (Motor mounting position: Top/Parallel)

LEY32DT7 (Motor mounting position: In-line)

LEY63 \square T8 (Motor mounting position: Top/Parallel, In-line)

LEY/LEY-X5/25A-LEY Series

Graph of Allowable Lateral Load on the Rod End (Guide)

[Stroke] = [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

Rod Displacement: δ [mm]

Size Stroke	30	50	100	150	200	250	300	350	400	450	500	600	700	800
$\mathbf{2 5}$	± 0.3	± 0.4	± 0.7	± 0.7	± 0.9	± 1.1	± 1.3	± 1.5	± 1.7	-	-	-	-	-
$\mathbf{3 2}$	± 0.3	± 0.4	± 0.7	± 0.6	± 0.8	± 1.0	± 1.1	± 1.3	± 1.5	± 1.7	± 1.8	-	-	-
$\mathbf{6 3}$	-	± 0.5	± 0.7	± 0.9	± 1.2	± 1.1	± 1.3	± 1.5	± 1.7	± 1.9	± 2.1	± 1.7	± 2.0	± 2.2

Non-rotating Accuracy of Rod

Size	Non-rotating accuracy θ
$\mathbf{2 5}$	$\pm 0.8^{\circ}$
$\mathbf{3 2}$	$\pm 0.7^{\circ}$
$\mathbf{6 3}$	$\pm 0.6^{\circ}$

* Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod.
This may cause the deformation of the non-rotating guide, abnormal auto switch responses, play in the internal guide, or an increase in the sliding resistance.

AC Servo Motor LECY \square Series

Electric Actuator/Rod Type

LEY/LEY-X5/25A-LEY Series DustrightWater-jet-proof (IP65 Equivalent) Secondary Battery Compatible

Model Selection

LEY Series \downarrow p. 89 LECS \square Series \downarrow p. 71, 81
LEY-X5 Series $>$ p. 169 25A-LEY Series $>p .181$

Selection Procedure

Positioning Control Selection Procedure

Step 2 Check the cycle time.

Selection Example

Operating conditions

Check the work load-speed. <Speed-Vertical work load graph>
Select the target model based on the workpiece mass and speed with reference to the <Speed-Vertical work load graph>.
Selection example) The LEY25B is temporarily selected based on the graph shown on the right side.

* It is necessary to mount a guide outside the actuator when used for horizontal transfer. When selecting the target model, refer to the horizontal work load in the specifications on pages 91 and 92 and the precautions.
The regenerative resistor may be necessary. Refer to pages 52 and 53 for "Conditions for Regenerative Resistor (Guide)."

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method. - Cycle time T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the motor type and load. The value below is recommended.

$$
\mathrm{T} 4=0.05[\mathrm{~s}]
$$

Calculation example)
T1 to T4 can be calculated as follows.

L : Stroke [mm] … (Operating condition)
V : Speed [mm/s] … (Operating condition)
a1: Acceleration [mm/s²] \cdots (Operating condition)
a2: Deceleration [mm/s²] \cdots (Operating condition)
T1: Acceleration time [s] ... Time until reaching the set speed T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed
T3: Deceleration time [s] ... Time from the beginning of the constant speed operation to stop T4: Settling time [s] ... Time until positioning is completed

<Speed-Vertical work load graph> (LEY25)
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=300 / 5000=0.06[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=300 / 5000=0.06[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{300-0.5 \cdot 300 \cdot(0.06+0.06)}{300}=0.94[\mathrm{~s}]$
$\mathrm{T} 4=0.05[\mathrm{~s}]$
Therefore, the cycle time can be obtained as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.06+0.94+0.06+0.05=1.11[\mathbf{s}]$

Selection Procedure

Pushing Control Selection Procedure

The duty ratio is a ratio of the operation time in one cycle.

Selection Example

Operating conditions
$\begin{array}{ll}\bullet \text { Mounting condition: Horizontal (pushing) } & \bullet \text { Duty ratio: } 60[\%] \\ \bullet \text { Jig weight: } 0.5[\mathrm{~kg}] & \bullet \text { Pushing speed: } 35[\mathrm{~mm} / \mathrm{s}]\end{array}$
-Force: 255 [N]

Model Selection $L E Y / L E Y-X 5 / 25 A-L E Y$ Series

Speed-Work Load Graph/Conditions for "Regenerative Resistor" (Guide)

LEY25 \square V6 (Motor mounting position: Top/Parallel, In-line)

Vertical

Horizontal

LEY32 \square V7 (Motor mounting position: Top/Parallel)

Vertical

Horizontal

LEY32DV7 (Motor mounting position: In-line)

Vertical

"Regenerative resistor" area

* When using the actuator in the "Regenerative resistor" area, download the "AC servo drive capacity selection program/SigmaJunmaSize+" from the SMC website. Then, calculate the necessary regenerative resistor capacity to prepare an appropriate external regenerative resistor.
* Regenerative resistor should be provided by the customer.

Horizontal

Applicable Motor/Driver

Model	Applicable model	
	Motor	Servopack (SMC driver)
LEY25 \square	SGMJV-01A3A	SGDV-R90A11ロ (LECYM2-V5) SGDV-R90A21 \square (LECYU2-V5)
LEY32 \square	SGMJV-02A3A	SGDV-1R6A11 SGDV-1R6A21 (LECYM2-V7) SECYU2-V7)

Speed-Work Load Graph/Conditions for "Regenerative Resistor" (Guide)

LEY63 \square V8 (Motor mounting position: Top/Parallel, In-line)

Vertical

"Regenerative resistor" area

* When using the actuator in the "Regenerative resistor" area, download the "AC servo drive capacity selection program/SigmaJunmaSize+" from the SMC website. Then, calculate the necessary regenerative resistor capacity to prepare an appropriate external regenerative resistor.
* Regenerative resistor should be provided by the customer.

Applicable Motor/Driver

Product no.	Applicable model	
	Motor	Servopack (SMC driver)
LEY63 \square	SGMJV-04A3A	SGDV-2R8A11ロ (LECYM2-V8) SGDV-2R8A21 \square (LECYU2-V8)

Allowable Stroke Speed

[mm/s]

Model	AC servo motor	Lead		Stroke [mm]													
		Symbol	[mm]	Up to 30	Up to 50	Up to 100	Up to 150	Up to 200	Up to 250	Up to 300	Up to 350	Up to 400	Up to 450	Up to 500	Up to 600	Up to 700	Up to 800
$\left(\begin{array}{c} \text { LEY25 } \square \text { V6 } \\ \text { Motor mounting } \\ \text { position: } \\ \text { Top/Parallel, In-line } \end{array}\right)$	$\begin{aligned} & 100 \mathrm{~W} \\ & \text { / } \square 40 \end{aligned}$	A	12	900							60	0	-	-	-	-	-
		B	6				450				30	0	-	-	-	-	-
		C	3				225				15	50	-	-	-	-	-
		(Motor rotation speed)					(4500 rpm)				(3000	rpm)	-	-	-	-	-
$\begin{gathered} \text { LEY32 } \square \text { V7 } \\ \left(\begin{array}{c} \text { Motor mounting } \\ \text { position: } \\ \text { Top/Parallel } \end{array}\right) \end{gathered}$	$\begin{gathered} 200 \mathrm{~W} \\ / \square 60 \end{gathered}$	A	20	1200									800		-	-	-
		B	10					600						0	-	-	-
		C	5					300						0	-	-	-
		(Motor rotation speed)						3600 rpm					(2400	rpm)	-	-	-
$\begin{gathered} \text { LEY32DV7 } \\ \left(\begin{array}{c} \text { Motor mounting } \\ \text { position: } \\ \text { In-line } \end{array}\right) \end{gathered}$	$\begin{gathered} 200 \mathrm{~W} \\ / \square 60 \end{gathered}$	A	16					1000						40	-	-	-
		B	8					500						20	-	-	-
		C	4					250						60	-	-	-
		(Motor rotation speed)						750 rpm					(2400	rpm)	-	-	-
$\left(\begin{array}{c} \text { LEY63 } \square \text { V8 } \\ \text { Motor mounting } \\ \text { position: } \\ \text { Top/Parallel, In-line } \end{array}\right)$	$\begin{gathered} 400 \mathrm{~W} \\ / \square 60 \end{gathered}$	A	20	-	1000										800	600	500
		B	10	-											400	300	250
		C	5	-											200	150	125
		(Motor rotation speed)		-					(3000	rpm)					(2400 rpm)	(1800 rpm)	(1500 rpm)
		L	2.86	-	70												
		(Motor rotation speed)		-	(1470 rpm)												

Force Conversion Graph (Guide)

LEY25■V6 (Motor mounting position: Top/Parallel, In-line)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
75 or less	100	-
90	60	1.5

LEY32 \square V7 (Motor mounting position: Top/Parallel)

LEY63■V8 (Motor mounting position: Top/Parallel, In-line)

LEY32DV7 (Motor mounting position: In-line)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
75 or less	100	-
90	60	1.5

LEY/LEY-X5/25A-LEY Series

AC Servo Moto
Size 25, 32, 63
Dust-tight/Water-jet-proof (IP65 Equivalent)
Secondary Battery Compatible

Graph of Allowable Lateral Load on the Rod End (Guide)

[Stroke] = [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

Rod Displacement: δ [mm]

Size	30	50	100	150	200	250	300	350	400	450	500	600	700	800
$\mathbf{2 5}$	± 0.3	± 0.4	± 0.7	± 0.7	± 0.9	± 1.1	± 1.3	± 1.5	± 1.7	-	-	-	-	-
$\mathbf{3 2}$	± 0.3	± 0.4	± 0.7	± 0.6	± 0.8	± 1.0	± 1.1	± 1.3	± 1.5	± 1.7	± 1.8	-	-	-
$\mathbf{6 3}$	-	± 0.5	± 0.7	± 0.9	± 1.2	± 1.1	± 1.3	± 1.5	± 1.7	± 1.9	± 2.1	± 1.7	± 2.0	± 2.2

Non-rotating Accuracy of Rod

Size	Non-rotating accuracy θ
25	$\pm 0.8^{\circ}$
32	$\pm 0.7^{\circ}$
63	$\pm 0.6^{\circ}$

Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod.
This may cause the deformation of the non-rotating guide, abnormal auto switch responses, play in the internal guide, or an increase in the sliding resistance.

(3) Motor type

Symbol	Type	Applicable size			Compatible controller/driver
		LEY16	LEY25	LEY32/40	
Nil	Step motor (Servo/24 VDC)	-	\bigcirc	\bigcirc	LECP6 JXCE1 LECP1 JXC91 LECPA JXCP1 LECPMJ JXCD1 JXCL1
A	Servo motor (24 VDC)	\bigcirc	\bigcirc	-	LECA6

Lead [mm]

Symbol	LEY16	LEY25	LEY32/40
\mathbf{A}	10	12	16
\mathbf{B}	5	6	8
\mathbf{C}	2.5	3	4

(5) Stroke [mm]

$\mathbf{3 0}$	30
to	to
$\mathbf{5 0 0}$	500

* For details, refer to the applicable stroke table below.

8 Mounting ${ }^{* 3}$

Symbol	Type	Motor mounting position	
		Top/Parallel	In-line
Nil	Ends tapped/Body bottom tapped $* 4$	\bullet	\bullet
\mathbf{L}	Foot	\bullet	-
\mathbf{F}	Rod flange*4	$\bullet *$	\bullet
\mathbf{G}	Head flange*4	$\bullet^{* 7}$	-
\mathbf{D}	Double clevis*5	\bullet	-

(9) Actuator cable type/length ${ }^{* 9}$

Standard cable [m] Robotic cable

Nil	None
S1	$1.5^{* 11}$
S3	$3^{* 11}$
S5	$5^{* 11}$

Robotic cable

	$[\mathrm{m}]$		
R1	1.5	RA	$10^{* 8}$
R3	3	RB	$15^{* 8}$
R5	5	RC	$20^{* 8}$
R8	$8^{* 8}$		

Series (For details, refer to pa		
6N $\square$$\square$		
10	$11 \text { 12 }$	
10 Controller/Driver type*10		
Nil	Without controller/driver	
6N	LECP6/LECA6 (Step data input type)	NPN
6P		PNP
1N	$\begin{gathered} \text { LECP1*11 } \\ \text { (Programless type) } \\ \hline \end{gathered}$	NPN
1P		PNP
MJ	LECPMJ*11 *12 (CC-Link direct input type)	-
AN	LECPA*11*13 (Pulse input type)	NPN
AP		PNP

11 I/O cable length ${ }^{* 14}$, Communication plug

$\mathbf{N i l}$	Without cable
	(Without communication plug connector)*16
$\mathbf{1}$	1.5 m
$\mathbf{3}$	$3 \mathrm{~m}^{* 15}$
$\mathbf{5}$	$5 \mathrm{~m}^{* 15}$
\mathbf{S}	Straight type communication plug connector*16
\mathbf{T}	T-branch type communication plug connector*66

LEY Series

Step Motor (Servo/24 VDC)

Compatible Controller/Driver

LEC \square Series

Type	Step data input type	Step data input type	CC-Link direct input type	Programless type	Pulse input type
Series	LECP6	LECA6	LECPMJ	LECP1	LECPA
Features	Value (Ste Standar	data) input controller	CC-Link direct input	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Servo motor (24 VDC)	Step motor (Servo/24 VDC)		
Max. number of step data	64 points			14 points	-
Power supply voltage	24 VDC				
Reference page	189	189	222	205	212

JXC \square Series

Type	EtherCAT ${ }^{\text {® }}$ direct input type	EtherNet/IPTM direct input type	PROFINET direct input type	DeviceNet ${ }^{\text {TM }}$ direct input type	IO-Link direct input type
Series	JXCE1	JXC91	JXCP1	JXCD1	JXCL1
Features	EtherCAT® ${ }^{\circledR}$ direct input	EtherNet/IPTM direct input	PROFINET direct input	DeviceNet ${ }^{\text {TM }}$ direct input	IO-Link direct input
Compatible motor	Step motor (Servo/24 VDC)				
Max. number of step data	64 points				
Power supply voltage	24 VDC				
Reference page	230				

-UTO

Specifications

Step Motor (Servo/24 VDC)

Model				LEY16			LEY25			LEY32			LEY40		
Actuator specifications	Work load [kg]*1	Horizontal (LECP6, LECP1, LECPMJ, JXC $\square 1$)	$\left(3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]\right)$	6	17	30	20	40	60	30	45	60	50	60	80
			$\left(2000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]\right)$	10	23	35	30	55	70	40	60	80	60	70	90
		$\begin{aligned} & \text { Horizontal } \\ & \text { (LECPA, } \\ & \text { JXC } \square_{3}^{2} \text {) } \end{aligned}$	$\left(3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]\right)$	4	11	20	12	30	30	20	40	40	30	60	60
			$\left(2000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]\right)$	6	17	30	18	50	50	30	60	60	-	-	-
		Vertical	$\left(3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]\right)$	2	4	8	8	16	30	11	22	43	13	27	53
	Pushing force [N$]^{* 2 * 3 * 4}$			14 to 38	27 to 74	51 to 141	63 to 122	126 to 238	232 to 452	80 to 189	156 to 370	296 to 707	132 to 283	266 to 553	562 to 1058
	Speed [mm/s]*4	LECP6/ LECPM	LECP1/ J/JXC $\square 1$	15 to 500	8 to 250	4 to 125	18 to 500	9 to 250	5 to 125	24 to 500	12 to 300	6 to 150	24 to 500	12 to 350	6 to 175
		LECPA	JXC $\square \frac{2}{3}$								12 to 250	6 to 125	24 to 300	12 to 150	6 to 75
	Max. acceleration/deceleration [mm/s²]			3000											
	Pushing speed [mm/s]*5			50 or less			35 or less			30 or less			30 or less		
	Positioning repeatability [mm]			± 0.02											
	Lost motion [mm]*6			0.1 or less											
	Screw lead [mm]			10	5	2.5	12	6	3	16	8	4	16	8	4
	Impact/Vibration resistance [$\left.\mathrm{m} / \mathrm{s}^{2}\right]^{* 7}$			50/20											
	Actuation type			Ball screw + Belt (LEY \square)/Ball screw (LEY $\square \mathrm{D}$)											
	Guide type			Sliding bushing (Piston rod)											
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40											
	Operating humidity range [\%RH]			90 or less (No condensation)											
	Motor size			$\square 28$			$\square 42$			$\square 56.4$			$\square 56.4$		
	Motor type			Step motor (Servo/24 VDC)											
	Encoder			Incremental A/B phase (800 pulse/rotation)											
	Rated voltage [V]			24 VDC $\pm 10 \%$											
	Power consumption [W]*8			23			40			50			50		
	Standby power consumption when operating [W]*9			16			15			48			48		
	Max. instantaneous power consumption [W**10			43			48			104			106		
	Type*11			Non-magnetizing lock											
	Holding force [N]			20	39	78	78	157	294	108	216	421	127	265	519
	Power consumption [W]*12			2.9			5			5			5		
	Rated voltage [V]			24 VDC $\pm 10 \%$											

*1 Horizontal: The maximum value of the work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load and transfer speed change according to the condition of the external guide. Also, speed changes according to the work load. Check
"Model Selection" on pages 39 and 40.
Vertical: Speed changes according to the work load. Check "Model Selection" on pages 39 and 40.
The values shown in () are the acceleration/deceleration.
Set these values to be $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ or less.
$* 2$ Pushing force accuracy is $\pm 20 \%$ (F.S.).
*3 The pushing force values for LEY16 \square is 35% to 85%, for LEY25 \square is 35% to 65%, for LEY32 \square is 35% to 85%, and for LEY $40 \square$ is 35% to 65%. The pushing force values change according to the duty ratio and pushing speed. Check "Model Selection" on page 42.
*4 The speed and force may change depending on the cable length, load, and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
*5 The allowable speed for pushing operation. When push conveying a workpiece, operate at the vertical work load or less.
*6 A reference value for correcting an error in reciprocal operation
*7 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*8 The power consumption (including the controller) is for when the actuator is operating.
*9 The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation. Except during the pushing operation
*10 The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
*11 With lock only
*12 For an actuator with lock, add the power consumption for the lock.

Specifications

Servo Motor (24 VDC)

Model			LEY16 \square A			LEY25 \square A		
	Work load	Hoizotal ($3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right.$])	3	6	12	7	15	30
	[kg] ${ }^{* 1}$	Vertical ($3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right.$])	2	4	8	3	6	12
	Pushing	force [N$]^{* 2 * 3}$	16 to 30	30 to 58	57 to 111	18 to 35	37 to 72	66 to 130
	Speed [[mm/s]	1 to 500	1 to 250	1 to 125	2 to 500	1 to 250	1 to 125
	Max. accelera	andideceleration [mm/s²]	3000					
	Pushing	speed [mm/s] ${ }^{* 4}$	50 or less			35 or less		
	Positioning	repeatability [mm]	± 0.02					
	Lost mo	tion [mm]*5	0.1 or less					
	Screw le	ead [mm]	10	5	2.5	12	6	3
	ImpactVibration	tion resistance $\left[\mathrm{m} / \mathrm{s}^{2}\right]^{* 6}$	50/20					
	Actuatio	on type	Ball screw + Belt (LEY \square)/Ball screw (LEY $\square \mathrm{D}$)					
	Guide	ype	Sliding bushing (Piston rod)					
	Operating te	mperature range [$\left.{ }^{\circ} \mathrm{C}\right]$	5 to 40					
	Operating h	humidity range [\%RH]	90 or less (No condensation)					
	Motor s		$\square 28$			$\square 42$		
	Motor 0	utput [W]	30			36		
	Motor ty	ype	Servo motor (24 VDC)					
	Encode		Incremental A/B phase (800 pulse/rotation)/Z phase					
	Rated v	oltage [V]	24 VDC $\pm 10 \%$					
	Power co	nsumption [W]*7	40			86		
	Standoy power con	Isumplion whenopopating WW ${ }^{* 8}$	4 (Horizontal)/6 (Vertical)			4 (Horizontal)/12 (Vertical)		
	Max. instantaneo	us pover consumption [W]*9	59			96		
- 0	Type*10		Non-magnetizing lock					
或	Holding	force [N$]$	20	39	78	78	157	294
	Power con	nsumption [W]*11	2.9			5		
	Rated v	voltage [V]	24 VDC $\pm 10 \%$					

*1 Horizontal: The maximum value of the work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load and transfer speed change according to the condition of the external guide. Vertical: Check "Model Selection" on page 41 for details.
The values shown in () are the acceleration/deceleration. Set these values to be 3000 [$\left.\mathrm{mm} / \mathrm{s}^{2}\right]$ or less.
$* 2$ Pushing force accuracy is $\pm 20 \%$ (F.S.).
*3 The thrust setting values for LEY16A \square is 60% to 95% and for LEY25AD is 70% to 95%. The pushing force values change according to the duty ratio and pushing speed. Check "Model Selection" on page 42
*4 The allowable speed for pushing operation. When push conveying a workpiece, operate at the vertical work load or less.
*5 A reference value for correcting an error in reciprocal operation
*6 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*7 The power consumption (including the controller) is for when the actuator is operating.
*8 The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation. Except during the pushing operation
*9 The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
*10 With lock only
*11 For an actuator with lock, add the power consumption for the lock.

Weight

Weight: Motor Top/Parallel Type

Series		LEY16							LEY25									LEY32										
	ke [mm]	30	50	100	150	200	250	300	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product	Step motor	0.58	0.62	0.73	0.87	0.98	1.09	1.20	1.18	1.25	1.42	1.68	1.86	2.03	2.21	2.38	2.56	2.09	2.20	2.49	2.77	3.17	3.46	3.74	4.03	4.32	4.60	4.89
weight [kg]	Servo motor	0.58	0.62	0.73	0.87	0.98	1.09	1.20	1.14	1.21	1.38	1.64	1.82	1.99	2.17	2.34	2.52								-			

Series		LEY40										
Stroke [mm]		30	50	100	150	200	250	300	350	400	450	500
Product	Step motor	2.39	2.50	2.79	3.07	3.47	3.76	4.04	4.33	4.62	4.90	5.19
weight [kg]	Servo motor	-	-	-	-	-	-	-	-	-	-	-

Weight: In-line Motor Type

SeriesStroke $[\mathrm{mm}]$		LEY16D							LEY25D									LEY32D										
		30	50	100	150	200	250	300	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product	Step motor	0.58	0.62	0.73	0.87	0.98	1.09	1.20	1.17	1.24	1.41	1.67	1.85	2.02	2.20	2.37	2.55	2.08	2.19	2.48	2.76	3.16	3.45	3.73	4.02	4.31	4.59	4.88
weight [kg]	Servo motor	0.58	0.62	0.73	0.87	0.98	1.09	1.20	1.13	1.20	1.37	1.63	1.81	1.98	2.16	2.33	2.51	-	-	-	-	-	-	-	-	-	-	-
Series		LEY40D																										
Stroke [mm]		30	50	100	150	200	250	300	350	400	450	500																
Product weight [kg]	Step motor	2.38	2.49	2.78	3.06	3.46	3.75	4.03	4.32	4.61	4.89	5.18																
	Servo motor	-	-	-	-	-	-	-	-	-	-	-																

Additional Weight

[kg]

Size		$\mathbf{1 6}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Lock	0.12	0.26	0.53	0.53	
Motor cover	0.02	0.03	0.04	0.05	
Lock/Motor cover	0.16	0.32	0.61	0.62	
Rod end male thread	Male thread	0.01	0.03	0.03	0.03
	Nut	0.01	0.02	0.02	0.02
Foot bracket (2 sets including mounting bolt)	0.06	0.08	0.14	0.14	
Rod flange (including mounting bolt)		0.13	0.17	0.20	0.20
Head flange (including mounting bolt)					
Double clevis (including pin, retaining ring, and mounting bolt)		0.08	0.16	0.22	0.22

LEY Series

Construction

Motor top mounting type: LEY $\begin{array}{r}16 \\ 32 \\ 32\end{array}$

Motor top/parallel type
With lock/motor cover

Construction

In-line motor type: With lock/motor cover

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw shaft	Alloy steel	
$\mathbf{3}$	Ball screw nut	Synthetic resin/Alloy steel	
4	Piston	Aluminum alloy	
5	Piston rod	Stainless steel	Hard chrome plating
$\mathbf{6}$	Rod cover	Aluminum alloy	
$\mathbf{7}$	Bearing holder	Aluminum alloy	
$\mathbf{8}$	Rotation stopper	POM	
$\mathbf{9}$	Socket	Free cutting carbon steel	Nickel plating
10	Connected shaft	Free cutting carbon steel	Nickel plating
11	Bushing	Bearing alloy	
12	Bearing	-	
13	Return box	Aluminum die-cast	Coating
14	Return plate	Aluminum die-cast	Coating
15	Magnet	-	
16	Wear ring holder	Stainless steel	Stroke 101 mm or more
17	Wear ring	POM	Stroke 101 mm or more
18	Screw shaft pulley	Aluminum alloy	
19	Motor pulley	Aluminum alloy	
20	Belt	-	
21	Parallel pin	Stainless steel	
22	Seal	NBR	
23	Retaining ring	Steel for spring	Phosphate coated
24	Motor	-	

No.	Description	Material	Note
$\mathbf{2 5}$	Motor cover	Synthetic resin	Only "With motor cover"
$\mathbf{2 6}$	Grommet	Synthetic resin	Only "With motor cover"
$\mathbf{2 7}$	Motor block	Aluminum alloy	Anodized
$\mathbf{2 8}$	Motor adapter	Aluminum alloy	Anodized/LEY16, 25 only
$\mathbf{2 9}$	Hub	Aluminum alloy	
$\mathbf{3 0}$	Spider	NBR	
$\mathbf{3 1}$	Motor cover with lock	Aluminum alloy	Only "With lock/motor cover"
$\mathbf{3 2}$	Cover support	Aluminum alloy	Only "With lock/motor cover"
$\mathbf{3 3}$	Socket (Male thread)	Free cutting carbon steel	Nickel plating
$\mathbf{3 4}$	Nut	Alloy steel	Zinc chromated

Replacement Parts (Motor top/parallel only)/Belt

No.	Size	Order no.
21	16	LE-D-2-1
	25	LE-D-2-2
	32,40	LE-D-2-3

Replacement Parts/Grease Pack

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

* Apply grease on the piston rod periodically.

Grease should be applied at 1 million cycles or 200 km , whichever comes first.

Dimensions: Motor Top/Parallel

*1 Range within which the rod can move when it returns to origin
Make sure workpieces mounted on the rod do not interfere with the workpieces and facilities around the rod.
*2 Position after return to origin
*3 [] for when the direction of return to origin has changed
$* 4$ The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.

Size		A	B	C	D	EH	EV	H	J	K	L	M	O	R	S	T	U	V	Step	motor	Serv	motor	Y
Size	range [mm]	A	B	C	D	EH	EV	H	J	K	L	M	O_{1}	R	S	T	U	V	W	X	W	X	
16	10 to 100	101	90.5	10	16	34	34.3	M 5×0.8	18	14	10.5	25.5	M 4×0.7	7	35	67.5	0.5	28	61.8	80.3	62.5	81	22.5
	101 to 300	121	110.5																				
25	15 to 100	130.5	116	13	20	44	45.5	M8 $\times 1.25$	24	17	14.5	34	M5 x 0.8	8	46	92	1	42	63.4	85.4	59.6	81.6	26.5
	101 to 400	155.5	141																				
32	20 to 100	148.5	130	13	25	51	56.5	M8 $\times 1.25$	31	22	18.5	40	M6x 1.0	10	60	118	1	56.4	68.4	95.4	-	-	34
	101 to 500	178.5	160																				
40	20 to 100	148.5	130	13	25	51	56.5	M8 $\times 1.25$	31	22	18.5	40	M6 x 1.0	10	60	118	1	56.4	90.4	117.4	-	-	34
	101 to 500	178.5	160													118	1	56.4	90.4	117.4	-	-	34

Body Bottom Tapped

[mm]											
Size	Stroke range $[\mathrm{mm}]$	MA	MB	MC	MD	MH	ML	MO	MR	XA	XB
16	10 to 39	15	35.5	17	23.5	23	40	$\mathrm{M} 4 \times 0.7$	5.5	3	4
	40 to 100			32	31		40				
	101 to 300			62	46		60				
25	15 to 39	20	46	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100			42	41		50				
	101 to 124			42	41		75				
	125 to 200			59	49.5						
	201 to 400			76	58						
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	20 to 39	25	55	22	36	30	50	M6x1	8.5	5	6
	40 to 100			36	43						
	101 to 124						80				
	125 to 200			53	51.5						
	201 to 500			70	60						

Dimensions: Motor Top/Parallel

* When the motor is mounted on the left or right side in parallel, the groove for auto switch on the side to which the motor is mounted is hidden.

	$[\mathrm{mm}]$	
Size	\mathbf{T}_{2}	\mathbf{X}_{2}
$\mathbf{1 6}$	7.5	83
$\mathbf{2 5}$	7.5	88.5
$\mathbf{3 2}$	7.5	98.5
$\mathbf{4 0}$	7.5	120.5

Motor cover material: Synthetic resin

\[

\]

LEY Series

Step Motor (Servo/24 VDC)

Dimensions: In-line Motor

*1 Range within which the rod can move when it returns to origin
Make sure workpieces mounted on the rod do not interfere with the workpieces and facilities around the rod.
*2 Position after return to origin
*3 [] for when the direction of return to origin has changed
*4 The direction of rod end width across flats ($\square \mathrm{K})$ differs depending on the products.

Size	Stroke range [mm]	Step motor	Servo motor	B	C	D	EH	EV	H	J	K	L	M	O1	R	S	T	U	V	Step motor	Servo motor	Y
16	10 to 100	166.3	167	92	10	16	34	34.3	M5 x 0.8	18	14	10.5	25.5	M4 x 0.7	7	35	35.5	0.5	28	61.8	62.5	24
	101 to 300	186.3	187	112																		
25	15 to 100	195.4	191.6	115.5	13	20	44	45.5	M8 x 1.25	24	17	14.5	34	M5 x 0.8	8	45	46.5	1.5	42	63.4	59.6	26
	101 to 400	220.4	216.6	140.5																		
32	20 to 100	216.9	-	128	13	25	51	56.5	M8 $\times 1.25$	31	22	18.5	40	M6 x 1	10	60	61	1	56.4	68.4	-	32
	101 to 500	246.9	-	158																		
40	20 to 100	238.9	-	128	13	25	51	56.5	M8 x 1.25	31	22	18.5	40	M6 x 1	10	60	61	1	56.4	90.4	-	32
	101 to 500	268.9	-	158														1		90.4	-	32

Body Bottom Tapped

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
16	10 to 39	15	17	23.5	23		M4 x 0.7	5.5	3	4
	40 to 100		32	31		40				
	101 to 300		62	46		60				
25	15 to 39	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100		42	41						
	101 to 124		42			75				
	125 to 200		59	49.5						
	201 to 400		76	58						
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	20 to 39	25	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100		36	43		50				
	101 to 124					80				
	125 to 200		53	51.5						
	201 to 500		70	60						

Dimensions: In-line Motor
With motor cover: $\operatorname{LEY}_{32}{ }_{30}^{25} \mathrm{D} \square \mathrm{B}-\square \mathrm{C}$

With lock: $\operatorname{LEY}_{32}{ }_{30}^{25} \stackrel{A}{\mathrm{D}} \square \square \mathrm{B}-\square \mathrm{B}$

With lock/motor cover: LEY | 16 |
| :---: |
| 30 |
| 25 |
| 20 |
| $\mathrm{D} \square \mathrm{B}-\square \mathrm{W}$ |
| C |

Size	Stroke range	A	T2	X2	L	CV
16	100st or less	210.5	7.5	108	35	43
	101st or more, 300st or less	230.5				
25	100st or less	239	7.5	109	46	54.4
	101st or more, 400st or less	264				
32	100st or less	263	7.5	116.5	60	68.5
	101st or more, 500st or less	293				
40	100st or less	285	7.5	138.5	60	68.5
	101st or more, 500st or less	315				

Size	Stroke range	Step motor Servo motor		Step motor Servo motor	
		A		VB	
16	100st or less	207.8	208.5	103.3	104
	101st or more, 200st or less	227.8	228.5		
25	100st or less	235.9	232.1	103.9	100.1
	101st or more, 400st or less	260.9	257.1		
32	100st or less	259.9	-	111.4	-
	101st or more, 500st or less	289.9	-		
40	100st or less	281.9	-	133.4	-
	101st or more, 500st or less	311.9	-		

LEY Series

Dimensions

\section*{End male thread: LEY| 16 | |
| ---: | :--- |
| 32 | |
| 40 | |
| 40 | |
| \square | |}

$[\mathrm{mm}]$						
Size	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{H}_{\mathbf{1}}$	$\mathbf{L}_{\mathbf{1}}$	$\mathbf{L}_{\mathbf{2}}$	$\mathbf{M M}$
$\mathbf{1 6}$	13	12	5	24.5	14	$\mathrm{M} 8 \times 1.25$
$\mathbf{2 5}$	22	20.5	8	38	23.5	$\mathrm{M} 14 \times 1.5$
$\mathbf{3 2 , 4 0}$	22	20.5	8	42.0	23.5	$\mathrm{M} 14 \times 1.5$

* Refer to page 99 for details on the rod end nut and mounting bracket.

Refer to the "Handling" precautions on pages 183 to 185 when mounting end brackets such as knuckle joint or workpieces.

* The L_{1} measurement is when the unit is in the original position. At this position, 2 mm at the end.

[^2]* The A measurement is when the unit is in the original position. At this position, 2 mm at the end.
* When the motor mounting is the right or left side parallel type, the head side foot bracket should be mounted outward.

Dimensions

Rod flange: LEY32 $\square \square \mathrm{B}-\square \square \square \mathrm{F}$

25 A
Double clevis: LEY32 $\square \square B-\square \square \square D$
40 C

A
Head flange: $\mathbf{L E Y} 25 \square \square \mathbf{B}-\square \square \square \mathbf{G}$

Rod/Head Flange

Size	FD	FT	FV	FX	FZ	LL	M
$\mathbf{1 6}$	6.6	8	39	48	60	2.5	-
$\mathbf{2 5}$	5.5	8	48	56	65	6.5	34
$\mathbf{3 2 , 4 0}$	5.5	8	54	62	72	10.5	40

Material: Carbon steel (Nickel plating)

Included parts

- Double clevis
- Body mounting bolt
- Clevis pin
- Retaining ring
* Refer to page 99 for details on the rod end nut and mounting bracket.
Double Clevis

Size	Stroke range [mm]	A	CL	CB	CD	CT
16	10 to 100	128	119	20	8	5
25	15 to 100	160.5	150.5	-	10	5
	101 to 200	185.5	175.5			
32	20 to 100	180.5	170.5	-	10	6
40	101 to 200	210.5	200.5			

Size	Stroke range [mm]	CU	CW	CX	CZ	L	RR
16	10 to 100	12	18	8	16	10.5	9
25	15 to 100	14	20	18	36	14.5	10
	101 to 200						
32	20 to 100	14	22	18	36	18.5	10
40	101 to 200						

Material: Cast iron (Coating)

* The A and CL measurements are when the unit is in the original position. At this position, 2 mm at the end.

Electric Actuator/

How to Order

(4) Motor type					
Symbol	Type	Output [W]	Actuator size	Compatible drivers*3	UL- compliant
S2*1	AC servo motor(Incremental encoder)	100	25	LECSAD-S1	-
S3		200	32	LECSAD-S3	-
S6*1	AC servo motor (Absolute encoder)	100	25	LECSB■-S5 LECSCD-S5 LECSSD-S5	-
S7		200	32	LECSB■-S7 LECSCD-S7 LECSSロ-S7	-
T6*2, *4	AC servo motor (Absolute encoder)	100	25	LECSB2-T5 LECSC2-T5	-
				LECSS2-T5	-*4
T7*4		200	32	LECSB2-T7 LECSC2-T7	-
				LECSS2-T7	- *4

1 Accuracy		
Nil	Basic type	
H	High-precision type	
3 Motor mounting position		
Nil	Top mounting	
R	Right side parallel	
L	Left side parallel	
D	In-line	
*1 For motor type S 2 and S 6 , the compatible d suffixes are S1 and S5 respectively.		
*2 For motor type T6, the compatible driv T5.		
*3 For d *4 The the L	ails on the d ly compatib SS2-T5 and	er to page complaint 2-T7.
(5) Lead [mm]		
Symbol	LEY25	LEY32*
A	12	16 (20)
B	6	8 (10)
C	3	4 (5)

*1 The values shown in () are the leads for the
size 32 top mounting, right/left side parallel types.
(Equivalent leads which include the pulley ratio [1.25:1])

Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

(5) Lead [mm]

6 Stroke [mm]

$\mathbf{3 0}$	30
to	to
500	500

* For details, refer to the applicable stroke table below. below.

7 Motor option

$\mathbf{N i l}$	Without option
\mathbf{B}	With lock*1

*1 When "With lock" is selected for the top mounting and right/left side parallel types, the motor body will stick out from the end of the body for size 25 with strokes of 30 mm or less. Check for interference with workpieces before selecting a model.

9 Mounting ${ }^{* 1}$

Symbol	Type	Motor mounting position
	Top/Parallel	In-line
Nil	Ends tapped/ Body bottom tapped	\bullet
L	Foot	\bullet
F	Rod flange*2	$\ominus^{* 4}$
G	Head flange*2	$\ominus^{* 5}$
D	Double clevis*3	\bullet

*1 The mounting bracket is shipped together with the product but does not come assembled.
*2 For the horizontal cantilever mounting of the rod flange, head flange, or ends tapped types, use the actuator within the following stroke range. -LEY25: 200 mm or less •LEY32: 100 mm or less *3 For the mounting of the double clevis type, use the actuator within the following stroke range.
-LEY25: 200 mm or less -LEY32: 200 mm or less
*4 The rod flange type is not available for the LEY25 with a 30 mm stroke and motor option "With lock."
*5 The head flange type is not available for the LEY32.

Applicable Stroke Table

- Standard

Model $\left.\begin{array}{c}\text { Stroke } \\ \text { [mm] }\end{array}\right]$	30	50	100	150	200	250	300	350	400	450	500	Manufacturable stroke range
LEY25	-	-	-	-	-	-	-	-	-	-	-	15 to 400
LEY32	-	-	-	-	-	-	-	\bullet	-	-	-	20 to 500

[^3]For auto switches, refer to pages 101 to 103.

Motor mounting position: Top/Parallel

Motor mounting position: In-line

10 Cable type ${ }^{* 1 * 2}$	
Nil	Without cable
S	Standard cable
R	Robotic cable (Flexible cable)

*1 The motor and encoder cables are included. (The lock cable is also included when the motor with lock option is selected.)
*2 Standard cable entry direction is

- Top/Parallel: (A) Axis side
- In-line: (B) Counter axis side
(Refer to page 270 for details.)
13 I/O cable length $[\mathrm{m}]^{* 1}$

$\mathbf{N i l}$	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

*1 When "Without driver" is selected for driver type, only "Nil: Without cable" can be selected.
Refer to page 271 if I/O cable is required.
(Options are shown on page 271.)

11 Cable length ${ }^{* 1}[\mathrm{~m}]$
Nil
2

*1 The length of the motor, encoder, and lock cables are the same.
12 Driver type*1

	Compatible driver	Power supply voltage [V]	UL- compliant
Nil	Without driver	-	-
A1	LECSA1-S \square	100 to 120	-
A2	LECSA2-S \square	200 to 230	-
B1	LECSB1-S \square	100 to 120	-
B2	LECSB2-S \square	200 to 230	-
	LECSB2-T \square	200 to 240	-
C1	LECSC1-S \square	100 to 120	-
C2	LECSC2-S \square	200 to 230	-
	LECSC2-T \square	-	
S1	LECSS1-S \square	100 to 120	-
S2	LECSS2-S \square	200 to 230	-
	LECSS2-T \square	200 to 240	-

*1 When a driver type is selected, a cable is included. Select the cable type and cable length.
Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil : Without cable and driver

Compatible Driver

Driver type	Pulse input type /Positioning type	Pulse input type	CC-Link direct input type	SSCNET III type	Pulse input type	CC-Link direct input type	
Series	LECSA	LECSB	LECSC	LECSS	LECSB-T	LECSC-T	LECSS-T
Number of point tables	Up to 7	-	Up to 255 (2 stations occupied)	-	Up to 255	Up to 255 (2stations occupied)	-
Pulse input	\bigcirc	\bigcirc	-	-	\bigcirc	-	-
Applicable network	-	-	CC-Link	SSCNET III	-	CC-Link	SSCNETIII/H
Control encoder	Incremental 17-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder	Absolute 22-bit encoder	Absolute 18-bit encoder	Absolute 22-bit encoder
Communication function	USB communication	USB communication,	S422 communication	USB communication	USB communication,	RS422 communication	USB communication
Power supply voltage [V]		$\begin{aligned} & 100 \text { to } 120 \\ & 200 \text { to } 230 \end{aligned}$	$\begin{aligned} & \text { AC }(50 / 60 \mathrm{~Hz}) \\ & \text { AC }(50 / 60 \mathrm{~Hz}) \end{aligned}$		200 to 240 VAC ($50 / 60 \mathrm{~Hz}$)	$\begin{aligned} & 200 \text { to } 230 \text { VAC } \\ & (50 / 60 \mathrm{~Hz}) \end{aligned}$	$\begin{gathered} 200 \text { to } 240 \mathrm{VAC} \\ (50 / 60 \mathrm{~Hz}) \end{gathered}$
Reference page	Click here						

Model				LEY25S ${ }_{6}^{2}$ (Top/Parallel)/LEY25DS ${ }_{6}^{2}$ (In-line)			LEY32S ${ }_{7}^{3}$ (Top/Parallel)			LEY32DS ${ }_{7}^{3}$ (In-line)		
	Work load [kg]		Horizontal* ${ }^{\text {* }}$	18	50	50	30	60	60	30	60	60
			Vertical	8	16	30	9	19	37	12	24	46
	Force [N]*2 (Set value: 15 to 30\%)			65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max. speed [mm/s]	Stroke range	Up to 300	900	450	225	1200	600	300	1000	500	250
			305 to 400	600	300	150						
			405 to 500	-	-	-	800	400	200	640	320	160
	Pushing speed [mm/s]*4			35 or less			30 or less			30 or less		
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			5000			5000					
	Positioning repeatability [mm]		Basic type	± 0.02								
			High-precision type	± 0.01								
	Lost motion [mm]*5		Basic type	0.1 or less								
			High-precision type	0.05 or less								
	Lead [mm] (including pulley ratio)			12	6	3	20	10	5	16	8	4
	Impact/Vibration resistance [m/s ${ }^{2}$] ${ }^{* 6}$			50/20			50/20					
	Actuation type			Ball screw + Belt (LEYD)/Ball screw (LEY $\square \mathrm{D}$)			Ball screw + Belt [1.25:1]			Ball screw		
	Guide type			Sliding bushing (Piston rod)			Sliding bushing (Piston rod)					
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40			5 to 40					
	Operating humidity range [\%RH]			90 or less (No condensation)			90 or less (No condensation)					
	Regeneration option			May be required depending on speed and work load (Refer to pages 45 and 46.)								
	Motor output/Size			$100 \mathrm{~W} / \square 40$			$200 \mathrm{~W} / \square 60$					
	Motor type			AC servo motor (100/200 VAC)			AC servo motor (100/200 VAC)					
	Encoder			Motor type S2, S3: Incremental 17-bit encoder (Resolution: $131072 \mathrm{p} / \mathrm{rev}$) Motor type S6, S7: Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$)								
	Power consumption [W]*7		Horizontal	45			65			65		
			Vertical	145			175			175		
	Standby power consumption when operating $[W] * 8$		Horizontal	2			2			2		
			Vertical	8			8			8		
	Max. instantaneous power consumption [W]*9			445			724			724		
	Type*10			Non-magnetizing lock								
	Holding force [N]			131	255	485	157	308	588	197	385	736
	Power consumption [W] at $20^{\circ} \mathrm{C}$ *11			6.3			7.9			7.9		
	Rated voltage [V]			24 VDC ${ }_{-10 \%}^{0}$								

*1 This is the maximum value of the horizontal work load. An external guide is necessary to support the load. The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
22 The force setting range (set values for the driver) for the force control with the torque control mode. Set it with reference to "Force Conversion Graph" on page 47. When the control equivalent to the pushing operation of the controller LECP series is performed, select the LECSS driver and combine it with the Simple Motion (manufactured by Mitsubishi Electric Corporation) which has a pushing operation function.
*3 The allowable speed changes according to the stroke. Set the number of rotations according to speed.
*4 The allowable collision speed for collision with the workpiece with the torque control mode
*5 A reference value for correcting an error in reciprocal operation
*6 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*7 The power consumption (including the driver) is for when the actuator is operating.
*8 The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
*9 The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
*10 Only when motor option "With lock" is selected
*11 For an actuator with lock, add the power consumption for the lock.

Weight

Product Weight

Series	LEY25S ${ }_{6}^{2}$ (Motor mounting position: Top/Parallel)									LEY32S ${ }_{7}^{3}$ (Motor mounting position: Top/Parallel)										
Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
흥 \% Incremental encoder	1.31	1.38	1.55	1.81	1.99	2.16	2.34	2.51	2.69	2.42	2.53	2.82	3.29	3.57	3.85	4.14	4.42	4.70	4.98	5.26
요 Absolute encoder	1.37	1.44	1.61	1.8	2.05	2.2	2.40	2.5	2.75	2.36	2.47	2.76	3.23	3.51	3.79	4.08	4.36	4.64	4.92	5.20
Series	LEY25DS ${ }_{6}^{2}$ (Motor mounting position: In-line)									LEY32DS ${ }_{7}^{3}$ (Motor mounting position: In-line)										
Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
흥 I Incremental encoder	1.34	1.41	1.58	1.84	2.02	2.19	2.37	2.54	2.72	2.44	2.55	2.84	3.31	3.59	3.87	4.16	4.44	4.72	5.00	5.28
을 Absolute encoder	1.40	1.47	1.64	1.9	2.08	2.25	2.4	2.60	2.78	2.3	2.49	2.78	3.25	3.53	3.81	4.10	4.38	4.66	4.9	5.22

Additional Weight			
Size	$\mathbf{2 5}$	$\mathbf{3 2}$	
	Incremental encoder	0.20	0.40
	Absolute encoder [S6/S7]	0.30	0.66
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot bracket (2 sets including mounting bolt)	0.08	0.14	
Rod flange (including mounting bolt)	0.17	0.20	
Head flange (including mounting bolt)			
Double clevis (including pin, retaining ring, and mounting bolt)		0.16	0.22

Specifications：LECS \square－T

	Model			LEY25T6（Top／Paralle）／LEY25DT6（n－line）			LEY32T7（Top／Parallel）			LEY32DT7（In－line）		
Work load［kg］			Horizontal＊	18	50	50	30	60	60	30	60	60
			Vertical	8	16	30	9	19	37	12	24	46
Force［ N$]^{* 2}$（Set value： 12 to 24\％）				65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
4	Max＊＊	Stroke range	Up to 300	900	450	225	1200	600	300	1000	500	250
	speed		305 to 400	600	300	150						
	［mm／s］		405 to 500	－	－	－	800	400	200	640	320	160
	Pushing speed $[\mathrm{mm} / \mathrm{s}]^{* 4}$			35 or less			30 or less			30 or less		
	Max．acceleration／deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right]$			5000			5000					
	Positioning repeatability［mm］		Basic type	± 0.02			± 0.02					
			High precisiontye		± 0.01		± 0.01					
	Lost motion＊5 ［mm］		Basic type	0.1 or less								
			High precision tpe	0.05 or less								
	Lead［mm］（including pulley ratio）			12	6	3	20	10	5	16	8	4
	Impact／Vibration resistance［ $\left.\mathrm{m} / \mathrm{s}^{2}\right]^{2}{ }^{* 6}$			50／20			50／20					
	Actuation type			Ball screw＋Belt（LEYD）／Ball screw（LEYCD）			Ball screw＋Belt［1．25：1］Ball screw					
	Guide type			Sliding bushing（Piston rod）			Sliding bushing（Piston rod）					
	Operating humidity range［\％RH］			5 to 40			5 to 40					
				90 or le	（No conde	nsation）	90 or less（No condensation）					
	Regeneration option			May be required depending on speed and work load．（Refer to pages 45 and 46．）								
	Motor output／Size			$100 \mathrm{~W} / \square 40$			$200 \mathrm{~W} / \square 60$					
	Motor type			AC servo motor（200 VAC）			AC servo motor（200 VAC）					
	Encoder＊12			Motor type T6，T7：Absolute 22－bit encoder（Resolution： 4194304 p／rev）（For LECSB－TD，LECSS－TD） Motor type T6，T7：Absolute 18－bit encoder（Resolution： 262144 p／rev）（For LECSC－T \square ）								
	Power consumption［W］＊		Horizontal	45			65			65		
			Vertical	145			175			175		
	Standby power consumption when operating $[W]^{* 8}$		Horizontal	2			2					
			Vertical		8			8			8	
	Max．instantaneous power consumption［W］＊9			445			724			724		
Type＊10 ${ }^{\text {Holding force }}$［ N$]$				Non－magnetizing lock								
				131	255	485	157	308	588	197	385	736
Power consumption $[\mathrm{W}]$ at $20^{\circ} \mathrm{C} * 11$ Rated voltage $[\mathrm{V}]$				6.3			7.9			7.9		
				$24 \mathrm{VDC}_{-10 \%}{ }^{\circ}$								

＊1 This is the maximum value of the horizontal work load．An external guide is necessary to support the load．The actual work load changes according to the condition of the external guide．Confirm the load using the actual device．
＊2 The force setting range（set values for the driver）for the force control with the torque control mode．Set it with reference to＂Force Conversion Graph （Guide）＂on page 48．When the control equivalent to the pushing operation of the LECP6 series controller is performed，select the LECSS－T or LECSB2－T driver．
The point table no．input method is used for the LECSB2－T．When selecting the LECSS2－T，combine it with a Simple Motion module（manufactured by Mitsubishi Electric Corporation）which has a pushing operation function．
＊3 The allowable speed changes according to the stroke．
＊4 The allowable collision speed for collision with the workpiece with the torque control mode．
＊5 A reference value for correcting an error in reciprocal operation．

6 Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．） Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
＊ 7 The power consumption（including the driver）is for when the actuator is operating．
8 The standby power consumption when operating（including the driver）is for when the actuator is stopped in the set position during the operation．
＊9 The maximum instantaneous power consumption（including the driver）is for when the actuator is operating．
10 Only when motor option＂With lock＂is selected
＊11 For an actuator with lock，add the power consumption for the lock．
＊12 The resolution will change depending on the driver type．

Weight

Product Weight																				
Series	LEY	5T6	Moto	mou	ting	posit	n： 7	p／Pa	lel）			$2 T 7$	Moto			posit		p／Pa	allel	
Stroke［mm］	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
흔 올 Absolute encoder	1.4	1.5	1.6	1.9	2.0	2.2	2.4	2.6	2.7	2.3	2.4	2.7	3.2	3.5	3.8	4.1	4.3	4.6	4.9	5.2
Series	LEY25DT6（Motor mounting position：In－line）									LEY32DT7（Motor mounting position：In－line）										
Stroke［mm］	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
흔 일 Absolute encoder	1.4	1.5	1.6	1.9	2.1	2.2	2.4	2.6	2.8	2.4	2.5	2.8	3.2	3.5	3.8	4.1	4.4	4.6	4.9	5.2

Additional Weight

Ad			${ }^{[\mathrm{kg}}$
	Size	25	
Lock	Absolute encoder［T6／T7］	0.3	0.4
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot bracket（2 sets including mounting bolt）		0.08	0.14
Rod flange（including mounting bolt）		0.17	0.20
Head flange（including mounting bolt）		0.17	0.20
Double clevis（including pin，retaining ring，and mounting bolt）		0.1	0.22

LEY Series

AC Servo Motor
 Size 25, 32

Construction

Motor top mounting type: LEY ${ }_{32}^{25}$

B-B

In-line motor type: $\operatorname{LEY}_{32}{ }^{25}$ D

No.	Description	Material	Note
$\mathbf{2 3}$	Retaining ring	Steel for spring	
24	Motor adapter	Aluminum alloy	Coating
25	Motor	-	
26	Motor block	Aluminum alloy	Coating
27	Hub	Aluminum alloy	
28	Spider	Urethane	
29	Socket (Male thread)	Free cutting carbon steel	Nickel plating
30	Nut	Alloy steel	Zinc chromated

Replacement Parts (Motor top/parallel only)/Belt

No.	Size	Order no.
20	25	LE-D-2-2
	$\mathbf{3 2}$	LE-D-2-4

Replacement Parts/Grease Pack	
Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

* Apply grease on the piston rod periodically.

Grease should be applied at 1 million cycles or 200 km , whichever comes first.

Component Parts

No.	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Ball screw shaft	Alloy steel	
3	Ball screw nut	Synthetic resin/Alloy steel	
4	Piston	Aluminum alloy	
5	Piston rod	Stainless steel	Hard chrome plating
6	Rod cover	Aluminum alloy	
7	Bearing holder	Aluminum alloy	
8	Rotation stopper	POM	
9	Socket	Free cutting carbon steel	Nickel plating
10	Connected shaft	Free cutting carbon steel	Nickel plating
11	Bushing	Bearing alloy	
12	Bearing	-	
13	Return box	Aluminum die-cast	Coating
14	Return plate	Aluminum die-cast	Coating
15	Magnet	-	
16	Wear ring holder	Stainless steel	Stroke 101 mm or more
17	Wear ring	POM	Stroke 101 mm or more
18	Screw shaft pulley	Aluminum alloy	
19	Motor pulley	Aluminum alloy	
20	Belt	-	
21	Parallel pin	Stainless steel	
22	Seal	NBR	
15			

Dimensions: Motor Top/Parallel

*1 Range within which the rod can move
Make sure workpieces mounted on the rod do not interfere with the workpieces and facilities around the rod.
*2 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.

Size	Stroke range [mm]	MA	MB	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	46	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100						50				
	101 to 124						75				
	125 to 200			59	49.5						
	201 to 400			76	58						
32	20 to 39	25	55	22	36	30	50	M6x 1	8.5	5	6
	40 to 100				43						
	101 to 124			36			80				
	125 to 200			53	51.5						
	201 to 500			70	60						

LEY Series

Dimensions: Motor Top/Parallel

Motor left side parallel type: $\operatorname{LEY}{ }_{32}{ }^{25}$ L

Motor right side parallel type: $\operatorname{LEY}_{32}^{25} R$

* When the motor is mounted on the left or right side in parallel, the groove for auto switch on the side to which the motor is mounted is hidden.

Dimensions：In－line Motor

＊1 Range within which the rod can move
Make sure workpieces mounted on the rod do not interfere with the workpieces and facilities around the rod．
＊2 The direction of rod end width across flats（ $\square \mathrm{K}$ ）differs depending on the products．

Size	Stroke range ［mm］	C	D	EH	EV			J	K	L	M	0		R	S	T	U	B	V		
25	15 to 100	13	20	44	45.5	M8 x 1.25		24	17	14.5	34	M5 x 0.8		8	45	46.5	1.5	136.5	40		
	105 to 400							161.5													
32	20 to 100	13	25	51	56.5	M8 x 1.25			31	22	18.5	40	M6 x 1.0		10	60	61	1	156	60	
	105 to 500							186													
Size	Stroke range ［mm］	Incremental encoder						Absolute encoder［S6／S7］						Absolute encoder［T6／T7］							
		Without lock			With lock			Without lock			With lock			Without lock			With lock				
		A	W	Z	A	W	Z	A	W	Z	A	W	Z	A	VB	VC	A	VB	VC		
25	15 to 100	238	87	14.6	274.9	123.9	16.3	233.4	82.4	14.6	274.5	123.5	16.3	233.4	82.4	14.6	274	123	16.3		
25	105 to 400	263			299.9			258.4			299.5			258.4			299				
32	20 to 100	262.7	88.2	17.1	291.3	116.8	17.1	251.1	76.6	17.1	290.6	116.1	17.1	251.1	76.6	17.1	287.9	113.4	17.1		
32	105 to 500	292.7			321.3			281.1			320.6			281.1			317.9				

Body Bottom Tapped

LEY Series

AC Servo Motor

Dimensions

End male thread: $\operatorname{LEY}_{32} \stackrel{-}{25} \stackrel{A}{\mathrm{~B}}-\square \square \mathrm{M}$

* Refer to page 99 for details on the rod end nut and mounting bracket.
* Refer to the precautions on page 185 when mounting end brackets such as knuckle joint or workpieces.

Size	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{H}_{\mathbf{1}}$	$\mathbf{L}_{\mathbf{1}}$	\mathbf{L}_{2}	$\mathbf{M M}$
$\mathbf{2 5}$	22	20.5	8	38	23.5	$\mathrm{M} 14 \times 1.5$
$\mathbf{3 2}$	22	20.5	8	42.0	23.5	$\mathrm{M} 14 \times 1.5$

* The L_{1} measurement is when the unit is in the original position. At this position, 2 mm at the end.

Included parts

- Foot bracket

- Body mounting bolt

Outward mounting

[mm														
Size	Stroke range [mm]	A	LS	LS ${ }_{1}$	LL	LD	LG	LH	LT	LX	LY	LZ	X	Y
25	15 to 100	136.6	98.8	19.8	8.4	6.6	3.5	30	2.6	57	51.5	71	11.2	5.8
25	101 to 400	161.6	123.8											
32	20 to 100	155.7	114	19.2	11.3	6.6	4	36	3.2	76	61.5	90	11.2	7
	101 to 500	185.7	144											

Material: Carbon steel (Chromate treated)

* The A measurement is when the unit is in the Z-phase first detecting position. At this position, 2 mm at the end.
* When the motor mounting is the right or left side parallel type, the head side foot bracket should be mounted outward.

Dimensions

Rod flange： $\operatorname{LEY}_{32}{ }^{25} \stackrel{A}{\mathrm{~B}} \stackrel{\mathrm{C}}{\square \square \square \mathrm{F}}$

Double clevis： $\operatorname{LEY}_{32} \stackrel{\text { 25 }}{\square} \stackrel{\mathrm{A}}{\mathrm{C}}-\square \square \square \mathrm{D}$

Included parts
－Double clevis
－Body mounting bolt
－Clevis pin
－Retaining ring
＊Refer to page 99 for details on the rod end nut and mounting bracket．
Double Clevis
［mm］

Size	Stroke range ［mm］	A		CL		CD	CT
25	15 to 100	160.5		150.5		10	5
	101 to 200	185.5		175.5			
32	20 to 100	180.5		170.5		10	6
	101 to 200	210.5		200.5			
Size	Stroke range ［mm］	CU	CW	CX	CZ	L	RR
25	15 to 100	14	20	18	36	14.5	10
	101 to 200						
32	20 to 100	14	22	18	36	18.5	10
	101 to 200						

Material：Cast iron（Coating）
＊The A and CL measurements are when the unit is in the Z－phase first detecting position．At this position， 2 mm at the end．
－Body mounting bolt mmat end．

Included parts
－Flange

Rod／Head Flange				$[\mathrm{mm}]$			
Size	FD	FT	FV	FX	FZ	LL	M
$\mathbf{2 5}$	5.5	8	48	56	65	6.5	34
$\mathbf{3 2}$	5.5	8	54	62	72	10.5	40

Material：Carbon steel（Nickel plating）
Head flange： $\mathbf{L E Y 2 5} \square \square \mathbf{B}-\square \square \square \mathbf{G}$

Electric Actuator/ Rod Type

RoHS

Refer to page 43 for model selection.
How to Order

[^4]Dust-tight/Water-jet-proof

Nil \quad IP5x equivalent (Dust-protected) | P | $\begin{array}{c}\text { IP65 equivalent (Dust-tight/Water-jet-proof)/ } \\ \text { With vent hole tap }\end{array}$ |
| :---: | :---: |

* When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water.
* The fitting and tubing should be provided separately by the customer. Select [Applicable tubing O.D.: 04 or more, Connection thread: Rc1/8].

Cannot be used in an environment where oil such as cutting oil splashes or it is constantly exposed to water. Take appropriate protective measures. For details on enclosure, refer to "Enclosure" on page 186.
11 Cable type ${ }^{* 1}$

Nil	Without cable
S	Standard cable
R	Robotic cable (Flexible cable)

*1 The motor and encoder cables are included (The lock cable is also included when the motor with lock option is selected.)

* Standard cable entry direction is
- Top/Parallel: (A) Axis side
- In-line: (B) Counter axis side
(Refer to page 270 for details.)

(4) I/O cable length [m] ${ }^{*}$

Nil	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

*1 When "Without driver" is selected for driver type, only "Nil: Without cable" can be selected. Refer to page 271 if I/O cable is required.
(Options are shown on page 271.)
3
Motor mounting position

Nil	Top mounting
\mathbf{R}	Right side parallel
\mathbf{L}	Left side parallel
\mathbf{D}	In-line

6 Stroke $[\mathrm{mm}]$	
$\mathbf{5 0}$	50
to	to
$\mathbf{8 0 0}$	800

* For details, refer to the applicable stroke table below.

\section*{8 Motor option
 | Nil | Without option |
| :---: | :---: |
| B | With lock |}

Rod end thread

Nil	Rod end female thread
M	Rod end male thread

(1 rod end nut is included.)
12 Cable length*2[m]

Nil	Without cable
$\mathbf{2}$	2
$\mathbf{5}$	5
A	10

*2 The length of the encoder, motor, and lock cables are the same.

Symbol	Type	$\begin{gathered} \text { Output\| } \\ {[\mathrm{W}]} \end{gathered}$	$\begin{aligned} & \text { Actuator } \\ & \text { size } \end{aligned}$	Compatible driver	$\begin{array}{\|c\|} \hline \text { UL. } \\ \text { compliant } \end{array}$
S4	AC servo motor (Incremental encoder)	400	63	LECSA2-S4	-
S8	AC servo motor (Absolute encoder)	400	63	LECSB2-S8 LECSC2-S8 LECSS2-S8	-
T8* ${ }^{1}$	AC servo motor (Absolute encoder)	400	63	$\begin{aligned} & \hline \text { LECSB2-T8 } \\ & \text { LECSC2-T8 } \\ & \hline \end{aligned}$	-
				LECSS2-T8	-*

*1 The only compatible driver complaint with UL standards is the LECSS2-T8.
Mounting*1

Symbol	Type	Motor mounting position	
		Top/Parallel	In-line
Nil	Ends tapped/ Body bottom tapped	\bullet	\bullet
L	Foot	\bullet	-
F	Rod flange*2	\bullet	\bullet
D	Double clevis*3	\bullet	-

*1 The mounting bracket is shipped together with the product but does not come assembled.
*2 For the horizontal cantilever mounting of the rod flange or ends tapped types, use the actuator within the following stroke range.
-LEY63: 400 mm or less
*3 For the mounting of the double clevis type, use the actuator within the following stroke range.
LEY63: 300 mm or less

13 Driver type*

	Compatible driver	Power supply voltage	UL-compliant
Nil	Without driver	-	-
A2	LECSA2-S4	200 to 230	-
B2	LECSB2-S8	200 to 230	-
	LECSB2-T8	200 to 240	-
\mathbf{C} C2	LECSC2-S8	200 to 230	-
	LECSC2-T8		-
S2	LECSS2-S8	200 to 230	-
	LECSS2-T8	200 to 240	-

* When a driver type is selected, a cable is included. Select the cable type and cable length.
Example) S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil :Without cable and driver

Applicable Stroke Table

* Please consult with SMC for non-standard strokes as they are produced as special orders.

Specifications

Model				LEY63S ${ }_{8}^{4} /$ T8 (Top/Parallel)				LEY63DS ${ }_{8}^{4} / \mathrm{T} 8$ (In-line)		
	Work load [kg]		Horizontal*1	40	70	80	200	40	70	80
			Vertical*14	19	38	72	115	19	38	72
	Force [N]/Set value*2: 15 to 50\%*3, 4			156 to 521	304 to 1012	573 to 1910	1003 to 3343	156 to 521	304 to 1012	573 to 1910
	Max. speed [mm/s]	Stroke range	Up to 500	1000	500	250	70	1000	500	250
			505 to 600	800	400	200		800	400	200
			605 to 700	600	300	150		600	300	150
			705 to 800	500	250	125		500	250	125
	Pushing speed [mm/s]*6			30 or less						
	Max. acceleration/deceleration [mm/s ${ }^{2}$]				5000		3000		5000	
	Positioning repeatability [mm]		Basic type	± 0.02						
			High precision type	± 0.01						
	Lost motion [mm]*7		Basic type	0.1 or less						
			High precision type	0.05 or less						
	Screw lead [mm] (including pulley ratio)			20	10	5	5 (2.86)	20	10	5
	Impact/Vibration resistance [m/s ${ }^{2}$]*8			50/20						
	Actuation type							Ball screw		
	Guide type			Sliding bushing (Piston rod)						
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40						
	Operating humidity range [\%RH]			90 or less (No condensation)						
	Regeneration option			May be required depending on speed and work load. (Refer to pages 45 and 46.)						
	Motor output/Size			$400 \mathrm{~W} / \square 60$						
	Motor type			AC servo motor (200 VAC)						
	Encoder*15			Motor type S4: Incremental 17-bit encoder (Resolution: $131072 \mathrm{p} / \mathrm{rev}$) Motor type S8: Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$) Motor type T8: Absolute 22-bit encoder (Resolution: 4194304 p/rev) (For LECSB2-T8, LECSS2-T8) Motor type T8: Absolute 18-bit encoder (Resolution: 262144 p/rev) (For LECSC2-T8)						
	Power consumption [W]*9		Horizontal	210						
			Vertical				230			
	Standby power consumption when operating [W]*10		Horizontal	2						
			Vertical	18						
	Max. instantaneous power consumption [W]*11			1275						
	Type*12			Non-magnetizing lock						
	Holding force [N]			313	607	1146	2006	313	607	1146
	Power consumption [W] at $20^{\circ} \mathrm{C} * 13$			7.9						
				$24 \mathrm{VDC}_{-10 \%}^{0}$						

*1 This is the maximum value of the horizontal work load. An external guide is necessary to support the load. The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*2 Set values for the driver.
*3 The force setting range (set values for the driver) for the force control with the torque control mode. The force and duty ratio change according to the set value. Set it with reference to "Force Conversion Graph" on page 47. When the control equivalent to the pushing operation of the LECP6 series controller is performed, select the LECSS, LECSS-T or LECSB2-T driver The point table no. input method is used for the LECSB2-T. When selecting the LECSS or LECSS2-T, combine it with a Simple Motion module (manufactured by Mitsubishi Electric Corporation) which has a pushing operation function.
*4 For the motor type T8, the set value is from 12 to 40%.
*5 The allowable speed changes according to the stroke. Set the number of rotations according to speed
*6 The allowable collision speed for collision with the workpiece with the torque control mode.
*7 A reference value for correcting an error in reciprocal operation.
*8 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to
the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*9 The power consumption (including the driver) is for when the actuator is operating.
*10 The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
*11 The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
*12 Only when motor option "With lock" is selected.
*13 For an actuator with lock, add the power consumption for the lock.
*14 When mounting vertically and using the product facing upwards in an environment where water is present, take necessary measures to prevent water from splashing on the rod cover, because water will accumulate on the rod seal due to the structure of the product.
*15 For motor type T8, the resolution will change depending on the driver type.

Weight

Product Weight

	Series	LEY63S ${ }_{8}^{4}$ (Motor mounting position: Top/Parallel)												
	Stroke [mm]	50	100	150	200	250	300	350	400	450	500	600	700	800
	Incremental encoder	4.9	5.4	6.0	6.6	7.8	8.3	8.9	9.4	10.0	10.5	12.2	13.4	14.5
	Absolute encoder (Motor type S8)	5.0	5.5	6.1	6.7	7.9	8.4	9.0	9.5	10.1	10.6	12.3	13.5	14.6
	Absolute encoder (Motor type T8)	4.9	5.4	6.0	6.6	7.8	8.3	8.9	9.4	10.0	10.5	12.2	13.4	14.5
	Series	LEY63DS ${ }_{8}^{4}$ (Motor mounting position: In-line)												
	Stroke [mm]	50	100	150	200	250	300	350	400	450	500	600	700	,
$\begin{aligned} & 0 \\ & 2 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Incremental encoder	5.1	5.6	6.2	6.7	7.9	8.4	9.0	9.6	10.2	10.7	12.4	13.5	14.7
	Absolute encoder (Motor type S8)	5.2	5.7	6.3	6.8	8.0	8.5	9.1	9.7	10.3	10.8	12.5	13.6	14.8
	Absolute encoder (Motor type T8)	5.1	5.6	6.2	6.7	7.9	8.4	9.0	9.6	10.2	10.7	12.4	13.5	14.7

Additional Weight

Size		$[\mathrm{kg}]$
Lock	Incremental encoder	0.4
	Absolute encoder (Motor type S8)	0.6
	Absolute encoder (Motor type T8)	0.4
Rod end male thread	Male thread	Nut
Foot bracket (2 sets including mounting bolt)	0.2 .26	
Rod flange (including mounting bolt)	0.51	
Double clevis (including pin, retaining ring, and mounting bolt)	0.58	

LEY Series

AC Servo Motor

Construction

Motor top mounting type: LEY63

In-line motor type: LEY63D

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw shaft	Alloy steel	
3	Ball screw nut	Resin/Alloy steel	
4	Piston	Aluminum alloy	
5	Piston rod	Stainless steel	Hard chrome plating
6	Rod cover	Aluminum alloy	
7	Bearing holder	Aluminum alloy	
8	Rotation stopper	Resin	
9	Socket	Free cutting carbon steel	Nickel plating
10	Bushing	Lead bronze cast	
11	Bearing	-	
12	Return box	Aluminum alloy	Coating
13	Return plate	Aluminum alloy	Coating
14	Magnet	-	
15	Wear ring holder	Stainless steel	

No.	Description	Material	Note
$\mathbf{1 6}$	Wear ring	Resin	
$\mathbf{1 7}$	Screw shaft pulley	Aluminum alloy	
$\mathbf{1 8}$	Motor pulley	Aluminum alloy	
$\mathbf{1 9}$	Belt	-	
$\mathbf{2 0}$	Lock nut	Alloy steel	Black dyed
$\mathbf{2 1}$	Seal	NBR	
$\mathbf{2 2}$	Retaining ring	Steel for spring	
$\mathbf{2 3}$	Motor adapter	Aluminum alloy	Coating
24	Motor	-	
25	Socket (Male thread)	Free cutting carbon steel	Nickel plating
26	Nut	Alloy steel	Trivalent chromated
27	Motor block	Aluminum alloy	Coating
28	Spacer A	Stainless steel	
29	Hub	Aluminum alloy	
30	Spider	Urethane	

Replacement Parts (Motor top/parallel only)/Belt

No.	Size	Lead	Order no.
19	63	A/B/C	LE-D-2-5
		L	LE-D-2-6

Replacement Parts/Grease Pack	
Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

[^5]
Dimensions: Motor Top/Parallel

*1 Range within which the rod can move
Make sure workpieces mounted on the rod do not interfere with the workpieces and facilities around the rod.
*2 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.

Section XX details

IP65 equivalent (Dust-tight/Water-jet-proof): LEY63 $\square \square \square-\square \mathbf{P}$
(View ZZ)

*1 When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water. The fitting and tubing should be provided separately by the customer.
Select [Applicable tubing O.D.: ø4 or more, Connection thread: Rc1/8].

Size	Stroke range [mm]	A	B	C	D	EH	EV	H	J	K	L	M	0		R	S	T	U	V
63	Up to 200	192.6	155.2 190.2 225.2		40	76	82	M16 x 2	44	36	37.4	60	M8 $\times 1.25$		16	80	14	4	60
	205 to 500	227.6																	
	505 to 800	262.6																	
Size	Stroke range [mm]	Incremental encoder						Absolute encoder [S8]						Absolute encoder [T8]					
		Without lock			With lock			Without lock			With lock			Without lock			With lock		
		W	X	Z	W	X	Z	W	X	Z	W	X	Z	W	X	Z	W	X	Z
63	Up to 200	110.2	150.2	$\begin{array}{c\|} 15.6 \\ (16.6)^{* 1} \end{array}$	138.8	178.8	$\begin{gathered} 15.6 \\ (16.6)^{* 1} \end{gathered}$	98.5	138.5	$\left\|\begin{array}{c} 15.6 \\ (16.6)^{* 1} \end{array}\right\|$	138	178	$\begin{array}{c\|} 15.6 \\ (16.6)^{* 1} \end{array}$	98.3	138.3	$\begin{gathered} 15.6 \\ (16.6)^{* 1} \end{gathered}$	135.1	175.1	$\begin{gathered} 15.6 \\ (16.6)^{* 1} \end{gathered}$
	205 to 500																		
	505 to 800																		

*1 The values in () are the dimensions when L is selected for screw lead.

Body Bottom Tapped

[mm]										
Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
63	50 to 74	38	24	50	44		M8 $\times 1.25$	10	6	7
	75 to 124		45	60.5		65				
	125 to 200		58	67						
	201 to 500		86	81		100				
	501 to 800					135				

LEY Series

Dimensions: Motor Top/Parallel

Motor left side parallel type: LEY63L

Motor right side parallel type: LEY63R

$[\mathrm{mm}]$			
Size	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{T}_{\mathbf{2}}$	\mathbf{U}
$\mathbf{6 3}$	84	142	4

[^6]* Option

Dimensions: In-line Motor

Section XX details
*1 Range within which the rod can move
Make sure workpieces mounted on the rod do not interfere with the

*2 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.

Size	Stroke range [mm]	C	D	EH	EV	H	J	K	L		M	O1		R	S			U	B	V
63	Up to 200	21	40	76	82	M16 x 2	44	36	37.4		0	M8 x 1.25		16				5	190.7	60
	205 to 500																		225.7	
	505 to 800																		260.7	
Size	Stroke range [mm]	Incremental encoder						Absolute encoder [S8]						Absolute encoder [T8]						
		Without lock			With lock			Without lock			With lock			Without lock				With lock		
		A	W	Z	A	W	Z	A	W	Z	A	W	Z		A	W	Z	A	W	Z
63	Up to 200	338.3	110.2	8.1	366.9	138.8	8.1	326.6	98.5	8.1	366.1	138	8.1		326.4	98.3	8.1	363.2	135.1	8.1
	205 to 500	373.3			401.9			361.6			401.1				361.4			398.2		
	505 to 800	408.3			436.9			396.6			436.1				396.4			433.2		

Body Bottom Tapped

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
63	50 to 74	38	24	50	44	65	M8 x 1.25	10	6	7
	75 to 124		45	60.5						
	125 to 200		58	67						
	201 to 500		86	81		100				
	501 to 800					135				

IP65 equivalent (Dust-tight/Water-jet-proof): LEY63D $\square \square-\square \mathbf{P}$
(View ZZ)

*1 When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water. The fitting and tubing should be provided separately by the customer.
Select [Applicable tubing O.D.: $\varnothing 4$ or more, Connection thread: Rc1/8].

LEY Series

Dimensions

End male thread: LEY63 $\square \square \square-\square \square \mathrm{M}$

*1 The measurement 76.4 is when the unit is in the Z-phase detecting position. At this position, 4 mm from the end of the operating range.

Foot: LEY63 $\square \square \square-\square \square L$

Included parts
- Foot bracket
- Body mounting bolt

Material: Carbon steel (Chromate treated)

* The overall length is when the unit is in the Z-phase detecting position. At this position, 4 mm from the end of the operating range.
* When the motor mounting is the right or left side parallel type, the head side foot bracket should be mounted outward.

	$[\mathrm{mm}]$	
Stroke range $[\mathrm{mm}]$	LA	LS
50 to 200	200.8	133.2
201 to 500	235.8	168.2
501 to 800	270.8	203.2

Rod flange: LEY63 $\square \square \square-\square \square F$

Material: Carbon steel (Nickel plating)
*1 When the unit is in the Z-phase detecting position. At this position, 4 mm from the end of the operating range.

Double clevis: LEY63 $\square \square \square-\square \square D$

Included parts
- Double clevis
- Body mounting bolt
- Clevis pin
- Retaining ring

	$[\mathrm{mm}]$	
Stroke range $[\mathrm{mm}]$	DA	CL
50 to 200	236.6	222.6
201 to 500	271.6	257.6
501 to 800	306.6	292.6

Material: Cast iron (Coating)

* The overall length is when the unit is in the Z-phase detecting position. At this position, 4 mm from the end of the operating range.

Electric Actuator/ Rod Type LEY Series LEY25, 32,63

How to Order

(1) Accuracy
Nil
Basic type
H
High-precision type

2) Size

25	Motor mounting position				
$\mathbf{3 2}$					
$\mathbf{6 3}$			\quad	Nil	Top mounting
:---:	:---:				
R	Right side parallel				
L	Left side parallel				
D	In-line				

4 Motor type

Symbol	Type	Output [W]	Size	Compatible driver
V6*1		100	25	LECYM2-V5 LECYU2-V5
	AC servo motor (Absolute encoder)	200	32	LECYM2-V7 LECYU2-V7
		400	63	LECYM2-V8 LECYU2-V8

*1 For motor type V6, the compatible driver part number suffix is V 5 .
5 Lead [mm]

Symbol	LEY25	LEY32 $^{* 1}$	LEY63
A	12	$16(20)$	20
B	6	$8(10)$	10
C	3	$4(5)$	5
L	-	-	$2.86^{* 2}$

*1 The values shown in () are the leads for the top mounting, right/left side parallel types. (Equivalent leads which include the pulley ratio [1.25:1])
*2 Only available for top mounting and right/left side parallel types (Equivalent leads which include the pulley ratio [4:7])

6 Stroke [mm]	
$\mathbf{3 0}$	30
to	to
800	800

* For details, refer to the applicable stroke table below.

Dust-tight/Water-jet-proof (Only available for LEY63)

Symbol	LEY25/32	LEY63
Nil	IP4x equivalent	IP5x equivalent (Dust-protected)
\mathbf{P}	-	IP65 equivalent (Dust-tight/ Water-jet-proof)/With vent hole tap

* When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water.
* The fitting and tubing should be provided separately by the customer. Select [Applicable tubing O.D.: ø4 or more, Connection thread: Rc1/8].
* Cannot be used in environments exposed to cutting oil, etc. Take appropriate protective measures. For details on enclosure, refer to "Enclosure" on page 186.

* When "With lock" is selected for the top mounting and right/left side parallel types, the motor body will stick out from the end of the body for size 25 with strokes of 30 mm or less. Check for interference with workpieces before selecting a model.

9 Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

Applicable Stroke Table

- Standard

Manufacturable 800 | $\mathbf{8 0 0}$ | stroke range | |
| :---: | :---: | :---: |
| | - | 15 to 400 |
| | - | 20 to 500 |
| | 50 to 800 | |

For auto switches, refer to pages 101 to 103.

[^7]
(10) Mounting*1

Symbol	Type	Motor mounting position	
		Top/Parallel	In-line
Nil	Ends tapped/ Body bottom tapped		
L			

*1 The mounting bracket is shipped together with the product but does not come assembled.
*2 For the horizontal cantilever mounting of the ends tapped, rod flange, or head flange types, use the actuator within the following stroke range.
. LEY25: 200 mm or less • LEY32: 100 mm or less • LEY63: 400 mm or less
*3 For the mounting of the double clevis type, use the actuator within the following stroke range.
. LEY25: 200 mm or less • LEY32: 200 mm or less • LEY63: 300 mm or less
*4 The rod flange type is not available for the LEY25 with a 30 mm stroke and motor option "With lock."
*5 The head flange type is not available for the LEY32/LEY63.

11 Cable type*1

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

*1 The motor and encoder cables are included. The motor cable for lock option is included when the motor with lock option is selected.

12 Cable length [m]*1

$\mathbf{N i l}$	Without cable
$\mathbf{3}$	3
$\mathbf{5}$	5
\mathbf{A}	10
\mathbf{C}	20

*1 The length of the motor and encoder cables are the same. (For with lock)

13 Driver type

	Compatible driver	Power supply voltage [V]
Nil	Without driver	-
M2	LECYM2-V \square	200 to 230
U2	LECYU2-V \square	200 to 230

* When a driver type is selected, a cable is included. Select the cable type and cable length.

(14 I/O cable length [m]*

Nil	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

*1 When "Without driver" is selected for driver
type, only "Nil: Without cable" can be selected.
Refer to page 284 if I/O cable is required.
(Options are shown on page 284.)

Compatible Driver

Driver type	MMECHATROLINK-II type	MMECHATROLINK-III type
Series	LECYM	LECYU
Applicable network	MECHATROLINK-II	MECHATROLINK-III
Control encoder	Absolute 20-bit encoder	
Communication device	USB communication, RS-422 communication	
Power supply voltage [V]	200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)	
Reference page	277	

Specifications

Model				LEY25V6 (Top/Parallel)/LEY25DV6 (In-line)			LEY32V7 (Top/Parallel)			LEY32DV7 (In-line)		
	Work load [kg]		Horizonta* ${ }^{*}$	18	50	50	30	60	60	30	60	60
			Vertical	8	16	30	9	19	37	12	24	46
	Force [N]*2 (Set value: 45 to 90\%)			65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max. speed [mm/s]	Stroke range	Up to 300	900	450	225	1200	600	300	1000	500	250
			305 to 400	600	300	150						
			405 to 500	-	-	-	800	400	200	640	320	160
	Pushing speed [mm/s]*4			35 or less			30 or less			30 or less		
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			5000			5000					
	Positioning repeatability [mm]		Basic type	± 0.02			± 0.02					
			High-precision type	± 0.01			± 0.01					
	Lost motion*5 [mm]		Basic type	0.1 or less			0.1 or less					
			High-rrecision type	0.05 or less			0.05 or less					
	Lead [mm] (including pulley ratio)			12	6	3	20	10	5	16	8	4
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 6}$			50/20			50/20					
	Actuation type			Ball screw + Belt (LEY \square)/Ball screw (LEY \square D)			Ball screw + Belt [1.25:1]			Ball screw		
	Guide type			Sliding bushing (Piston rod)			Sliding bushing (Piston rod)					
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40			5 to 40					
	Operating humidity range [\%RH]			90 or less (No condensation)			90 or less (No condensation)					
	$\begin{array}{\|l\|} \hline \text { Conditions for*7 } \\ \text { "Regenerative resistor" }[\mathrm{kg}] \\ \hline \end{array}$		Horizontal	Not required			Not required					
			Vertical	6 or more			4 or more					
\%	Motor output/Size			$100 \mathrm{~W} / \square 40$			$200 \mathrm{~W} / \square 60$					
	Motor type			AC servo motor (200 VAC)			AC servo motor (200 VAC)					
	Encoder			Absolute 20-bit encoder (Resolution: $1048576 \mathrm{p} / \mathrm{rev}$)								
	Power consumption [W]*8		Horizontal	45			65			65		
			Vertical	145			175			175		
은	Standby power consumption when operating [W]*9		Horizontal	2			2			2		
\%			Vertical	8			8			8		
ш	Max. instantaneous power consumption [W]*10			445			724			724		
				Non-magnetizing lock								
				131	255	485	157	308	588	197	385	736
				5.5			6			6		
د				$24 \mathrm{VDC}^{+10 \%}$								

*1 This is the maximum value of the horizontal work load. An external quide is necessary to support the load. The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*2 The force setting range (set values for the driver) for the force control with the torque control mode. Set it with reference to "Force Conversion Graph (Guide)" on page 54.
*3 The allowable speed changes according to the stroke.
*4 The allowable collision speed for collision with the workpiece with the torque control mode
*5 A reference value for correcting an error in reciprocal operation
*6 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*7 The work load conditions which require "Regenerative resistor" when operating at the maximum speed (Duty ratio: 100%). Order the regenerative resistor separately. For details, refer to "Conditions for Regenerative Resistor (Guide)" on pages 52 and 53.
*8 The power consumption (including the driver) is for when the actuator is operating.
*9 The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
*10 The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
*11 Only when motor option "With lock" is selected
*12 For an actuator with lock, add the power consumption for the lock.

Weight

Product Weight																				[kg]
Series	LEY	5V6	(Moto	,	兂	posit	on: T	p/Pa	allel)		EY	,		moun	ting	posit	on:	/Pa	rallel	
Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Weight [kg]	1.2	1.3	1.6	1.7	1.9	2.1	2.2	2.4	2.6	2.3	2.4	2.7	3.2	3.5	3.8	4.0	4.3	4.6	4.9	5.2
Series	LEY25DV6 (Motor mounting position: In-line)									LEY32DV7 (Motor mounting position: In-line)										
Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Weight [kg]	1.2	1.3	1.5	1.7	1.9	2.1	2.3	2.4	2.6	2.3	2.4	2.7	3.2	3.5	3.8	4.1	4.3	4.6	4.9	5.2

Additional Weight

Size		$\mathbf{2 5}$	$\mathbf{3 2}$
Lock	0.30	0.60	
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot bracket (2 sets including mounting bolt)	0.08	0.14	
Rod flange (including mounting bolt)	0.17	0.20	
Head flange (including mounting bolt)			0.22
Double clevis (including pin, retaining ring, and mounting bolt)		0.16	0.2

Specifications

Model				LEY63V8 (Top/Parallel)				LEY63DV8 (In-line)			
	Work load [kg]		Horizonta** ${ }^{*}$	40	70	80	200	40	70	80	
			Vertical	19	38	72	115	19	38	72	
	Force [N]/Set value*2 : 45 to 150\%*3			156 to 521	304 to 1012	573 to 1910	1003 to 3343	156 to 521	304 to 1012	573 to 1910	
	Max. speed [mm/s]	Stroke range	Up to 500	1000	500	250	70	1000	500	250	
			505 to 600	800	400	200		800	400	200	
			605 to 700	600	300	150		600	300	150	
			705 to 800	500	250	125		500	250	125	
$\stackrel{5}{0}$	Pushing speed [mm/s]*5			30 or less							
$$	Max. acceleration/deceleration [mm/s ${ }^{2}$]			5000			3000	5000			
	Positioning repeatability [mm]		Basic type	± 0.02							
$\left.\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$			High-precision type	± 0.01							
$\overline{\mathbf{m}}$	Lost motion [mm]*6		Basic type	0.1 or less							
$\stackrel{\mathbf{O}}{\underline{\sigma}}$			High-precision type	0.05 or less							
Oِ	Screw lead [mm] (including pulley ratio)			20	10	5	5 (2.86)	20	10	5	
$\stackrel{8}{4}$	Impact/Vibration resistance [m/s ${ }^{2}{ }^{* 7}$			50/20							
	Actuation type			Ball screw			\|Ball sceew + Betif Pulley alio 477]		Ball screw		
	Guide type			Sliding bushing (Piston rod)							
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40							
	Operating humidity range [\%RH]			90 or less (No condensation)							
	$\begin{array}{\|l\|} \hline \text { Conditions for*8 } \\ \text { "Regenerative resistor" [kg] } \\ \hline \end{array}$		Horizontal	Not required							
			Vertical	2.5 or more							
	Motor output/Size			$400 \mathrm{~W} / \square 60$							
	Motor type			AC servo motor (200 VAC)							
	Encoder			Absolute 20-bit encoder (Resolution: $1048576 \mathrm{p} / \mathrm{rev}$)							
	Power consumption [W]*9		Horizontal	210							
			Vertical				230				
	Standby power consumption when operating [W]*10		Horizontal	2							
			Vertical	18							
	Max. instantaneous power consumption [W]*11			1275							
	Type*12			Non-magnetizing lock							
	Holding force [N]			313	607	1146	2006	313	607	1146	
	Power consumption [W] at $20^{\circ} \mathrm{C}$ *13			6							
	Rated voltage [V]			$24 \mathrm{VDC}^{+10 \%}$							

*1 This is the maximum value of the horizontal work load. An external guide is necessary to support the load. The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*2 Set values for the driver
*3 The force setting range (set values for the driver) for the force control with the torque control mode. The force and duty ratio change according to the set value. Set it with reference to "Force Conversion Graph (Guide)" on page 54.
*4 The allowable speed changes according to the stroke.
*5 The allowable collision speed for collision with the workpiece with the torque control mode
*6 A reference value for correcting an error in reciprocal operation
*7 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*8 The work load conditions which require "Regenerative resistor" when operating at the maximum speed (Duty ratio: 100\%)
*9 The power consumption (including the driver) is for when the actuator is operating.
*10 The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
*11 The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
*12 Only when motor option "With lock" is selected
*13 For an actuator with lock, add the power consumption for the lock.

Weight

Product Weight

Series	LEY63V8 (Motor mounting position: Top/Parallel)												
Stroke [mm]	50	100	150	200	250	300	350	400	450	500	600	700	800
Weight [kg]	4.8	5.3	6.0	6.5	7.7	8.2	8.8	9.3	9.9	10.4	12.1	13.3	14.4
Series	LEY63DV8 (Motor mounting position: In-line)												
Stroke [mm]	50	100	150	200	250	300	350	400	450	500	600	700	800
Weight [kg]	5.0	5.5	6.1	6.6	7.8	8.3	9.0	9.5	10.1	10.6	12.3	13.4	14.6

Additional Weight

Size		63
Lock	0.6	
Rod end male thread	Male thread	0.12
	Nut	0.04
Foot bracket (2 sets including mounting bolt)	0.26	
Rod flange (including mounting bolt)	0.51	
Double clevis (including pin, retaining ring, and mounting bolt)	0.58	

LEY Series

AC Servo Motor

Construction

Motor top mounting type: LEY32

B-B

25
In-line motor type: LEY32D
63

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw shaft	Alloy steel	
$\mathbf{3}$	Ball screw nut	Resin/Alloy steel	
$\mathbf{4}$	Piston	Aluminum alloy	
$\mathbf{5}$	Piston rod	Stainless steel	Hard chrome plating
$\mathbf{6}$	Rod cover	Aluminum alloy	
$\mathbf{7}$	Bearing holder	Aluminum alloy	
$\mathbf{8}$	Rotation stopper	POM	
9	Socket	Free cutting carbon steel	Nickel plating
$\mathbf{1 0}$	Connected shaft	Free cutting carbon steel	Nickel plating
$\mathbf{1 1}$	Bushing	Bearing alloy	
$\mathbf{1 2}$	Bearing	-	
$\mathbf{1 3}$	Return box	Aluminum die-cast	Coating
$\mathbf{1 4}$	Return plate	Aluminum die-cast	Coating
15	Magnet	-	
$\mathbf{1 6}$	Wear ring holder	Stainless steel	Stroke 101 mm or more
$\mathbf{1 7}$	Wear ring	POM	Stroke 101 mm or more
$\mathbf{1 8}$	Screw shaft pulley	Aluminum alloy	
93			

No.	Description	Material	Note
19	Motor pulley	Aluminum alloy	
20	Belt	-	
21	Parallel pin	Stainless steel	
22	Seal	NBR	
23	Retaining ring	Steel for spring	Phosphate coated
24	Motor adapter	Aluminum alloy	Coating
25	Motor	-	
26	Motor block	Aluminum alloy	Coating
27	Hub	Aluminum alloy	
28	Spider	Urethane	
29	Socket (Male thread)	Free cutting carbon steel	Nickel plating
30	Nut	Alloy steel	Zinc chromated

Replacement Parts (Motor top/parallel only)/Belt

No.	Size	Order no.	No.	Size	Lead	Order no.
20	25	LE-D-2-2	20	63	A/B/C	LE-D-2-5
	32	LE-D-2-4			L	LE-D-2-6

Dimensions: Motor Top/Parallel

IP65 equivalent (Dust-tight/Water-jet-proof): LEY63 $\square \square \square-\square \mathbf{P}$

(View ZZ)

*1 When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water. The fitting and tubing should be provided separately by the customer. Select [Applicable tubing O.D.: $\varnothing 4$ or more, Connection thread: Rc1/8].

Size	Stroke range [mm]	A		B	C D	D EH	EV		H	J	K	L	M		O_{1}		R	S	T U		Y	V	
25	15 to 100	130.5		16	13	44	45.5	M8 x 1.25		24	17	14.5	34	M5 x 0.8			8	46	92	26.5		40	
	105 to 400	155.5		41																			
32	20 to 100	148.5		30	13	51	56.5	M8 x 1.25		31	22	18.5	40	M6 x 1.0			10	60	118	34		60	
	105 to 500	178.5		60																			
63	Up to 200	192.6		55.2	21	76	82	M16 x 2		44	36	37.4	60	M8 x 1.25			16	80	146	32.2		60	
	205 to 500	227.6		90.2																			
	505 to 800	262.6		25.2																			
Size	Stroke range [mm]	Without lock			With lock			F	G	Body Bottom Tapped												[mm]	
		W	X	Z	W	X	Z			Size	Stroke range [mm]		MA	MB	MC	MD	MH	ML	MO	MR			
25	15 to 100	82.5	115.5	11	127.5	160.5	11	2	4				XA								XB		
	105 to 400											35				24	32		50	M5 x 0.8			
32	20 to 100	80	120	14	120	160	14	2	4	25	40	100	20	46			29	6.5			4	5	
	105 to 500										105	120			42	41			75				
63	50 to 200	98.5	138.5		138.5	178.5	$\begin{gathered} 12.5 \\ (13.5)^{* 1} \end{gathered}$	4	8		125	200			59	49.5							
	205 to 500			$\begin{gathered} 12.5 \\ (13.5)^{* 1} \end{gathered}$							205	400			76	58							
	505 to 800									32		35	25	55	22	36	30		M6 x 1	8.5	5		
								* 1	lead		40	100						50				6	
											105	120			36	43		80					
											125	200			53	51.5							
											205	500			70	60							
										63		70	38	52.2	24	50	44	65	M8 x 1.25	10	6		
											75	120			45	60.5						7	
											125	200			58	67							
											205	500			86	81		100					
											505	800											

LEY Series

Dimensions: Motor Top/Parallel

25
Motor left side parallel type: LEY 32 L
63

25
Motor right side parallel type: LEY 32R 63

	$[\mathrm{mm}]$		
Size	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{T}_{\mathbf{2}}$	\mathbf{U}
$\mathbf{2 5}$	47	91	1
$\mathbf{3 2}$	61	117	1
$\mathbf{6 3}$	84	142	4

* When the motor is mounted on the left or right side in parallel, the groove for auto switch on the side to which the motor is mounted is hidden.

Dimensions：In－line Motor

Size	Stroke range ［mm］	C	D	EH	EV	H	J	K	L	M	O1	R	S	T	U	B	V
25	15 to 100	13	20	44	45.5	M8x 1.25	24	17	14.5	34	M5 x 0.8	8	45	46.5	1.5	136.5	40
	105 to 400															161.5	
32	20 to 100	13	25	51	56.5	M8 x 1.25	31	22	18.5	40	M6 x 1.0	10	60	61	1	156	60
	105 to 500															186	
63	50 to 200	21	40	76	82	M16 x 2	44	36	37.4	60	M8 x 1.25	16	78	83	5	190.7	60
	205 to 500															225.7	
	505 to 800															260.7	

Size	Stroke range ［mm］	Without lock			With lock			F	G
		A	W	Z	A	W	Z		
25	15 to 100	233.5	82.5	11.5	278.5	127.5	11.5	2	4
	105 to 400	258.5			303.5				
32	20 to 100	254.5	80	14	294.5	120	14	2	4
	105 to 500	284.5			324.5				
63	50 to 200	326.6	98.5	5	366.6	138.5	5	4	8
	205 to 500	361.6			401.6				
	505 to 800	396.6			436.6				

Bod	Bottom	Tap	ped							［mm］
Size	Stroke range ［mm］	MA	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 35	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100									
	105 to 120		42	41		75				
	125 to 200		59	49.5						
	205 to 400		76	58						
32	20 to 35	25	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100									
	105 to 120		36	43		80				
	125 to 200		53	51.5						
	205 to 500		70	60						
63	50 to 70	38	24	50	44	65	M8 x 1.25	10	6	7
	75 to 120		45	60.5						
	125 to 200		58	67						
	205 to 500		86	81		100				
	505 to 800					135				

IP65 equivalent（Dust－tight／Water－jet－proof）：LEY63D $\square \square-\square \mathbf{P}$

（View ZZ）

＊1 When using the dust－tight／water－jet－proof（IP65 equivalent），correctly mount the fitting and tubing to the vent hole tap，and then place the end of the tubing in an area not exposed to dust or water．The fitting and tubing should be provided separately by the customer．

LEY Series

AC Servo Motor

Dimensions

* Refer to page 99 for details on the rod end nut and mounting bracket.
* Refer to the precautions on page 185 when mounting end brackets such as knuckle joint or workpieces.

Size	\mathbf{B}_{1}	\mathbf{C}_{1}	\mathbf{H}_{1}	$\mathbf{L}_{1}{ }^{* 1}$	\mathbf{L}_{2}	$\mathbf{M M}$
$\mathbf{2 5}$	22	20.5	8	38	23.5	M14 $\times 1.5$
$\mathbf{3 2}$	22	20.5	8	42.0	23.5	M14 $\times 1.5$
$\mathbf{6 3}$	27	26	11	76.4	39	M18 $\times 1.5$

*1 The L_{1} measurement is when the unit is in the Z phase first detecting position. At this position, 2 mm at the end (size 25,32) and 4 mm at the end (size 63).

[mm														
Size	Stroke range [mm]	A	LS	LS 1	LL	LD	LG	LH	LT	LX	LY	LZ	X	Y
25	15 to 100	136.6	98.8	19.8	8.4	6.6	3.5	30	2.6	57	51.5	71	11.2	5.8
	105 to 400	161.6	123.8											
32	20 to 100	155.7	114	19.2	11.3	6.6	4	36	3.2	76	61.5	90	11.2	7
	105 to 500	185.7	144											
63	50 to 200	200.8	133.2	25.2	29.2	8.6	5	50	3.2	95	88	110	14.2	8
	205 to 500	235.8	168.2											
	505 to 800	270.8	203.2											

Material: Carbon steel (Chromate treated)

* The A measurement is when the unit is in the Z-phase first detecting position. At this position, 2 mm at the end (size 25,32) and 4 mm at the end (size 63).
* When the motor mounting is the right or left side parallel type, the head side foot bracket should be mounted outward.

Dimensions

Rod flange:	

Material: Carbon steel (Nickel plating)

* The LL measurement is when the unit is in the Z-phase first detecting position. At this position, 2 mm at the end (size 25,32) and 4 mm at the end (size 63).

* Refer to page 99 for details on the rod end nut and mounting bracket.

Double Clevis
Included parts Double clevis Body mounting bolt - Clevis pin -Retaining ring

Size	Stroke range [mm]	A	CL	CD	CT	CU	CW	CX	CZ	L	RR
25	15 to 100	160.5	150.5	10	5	14	20	18	36	14.5	10
	105 to 200	185.5	175.5								
32	20 to 100	180.5	170.5	10	6	14	22	18	36	18.5	10
	105 to 200	210.5	200.5								
63	50 to 200	236.6	222.6	14	8	22	30	22	44	37.4	14
	205 to 500	271.6	257.6	-	-						
	505 to 800	306.6	292.6	-	-						

Material: Cast iron (Coating)

* The A and CL measurements are when the unit is in the Z-phase first detecting position. At this position, 2 mm at the end (size 25,32) and 4 mm at the end (size 63).

LEY Series
 Accessory Mounting Brackets

Accessory Brackets/Support Brackets

Single Knuckle Joint

* If a knuckle joint is used, select the body option [end male thread].

> I-G02

Material: Carbon steel

I-G04

Part no.	Applicable size	A	A1	E1	L1	MM	R1	\mathbf{U}_{1}	ND ${ }_{\text {H10 }}$	NX
I-G02	16	34	8.5	$\square 16$	25	M8× 1.25	10.3	11.5	$8{ }^{+0.058}$	$8_{-0.4}^{-0.2}$
I-G04	25, 32, 40	42	14	ø22	30	M14 $\times 1.5$	12	14	$10_{0}^{+0.058}$	$18{ }_{-0.5}^{-0.3}$
I-G05	63	56	18	ø28	40	M18 $\times 1.5$	16	20	$14_{0}^{+0.070}$	$22_{-0.5}^{-0.3}$

Knuckle Pin

* Common with double clevis pin

Material: Carbon steel
[mm]

Part no.	Applicable size	Dd9	L1	L2	d	m	t	Retaining ring
IY-G02	16	$8{ }_{-0.076}^{-0.040}$	21	16.2	7.6	1.5	0.9	Type C retaining ring 8
IY-G04	25, 32, 40	$10_{-0.076}^{-0.040}$	41.6	36.2	9.6	1.55	1.15	Type Cretaining ing 10
IY-G05	63	$14_{-0.093}^{-0.050}$	50.6	44.2	13.4	2.05	1.15	Type Cretaining ing 14

Mounting Bracket Part Nos.

Mounting bracket	Order	Applicable size				Contents
Foot	$\mathbf{2}^{* 1}$	LEY-L016	LEY-L025	LEY-L032	LEY-L063	
Flange	1	LEY-F016	LEY-F025	LEY-F032	LEY-F063	Flange x 1 Mounting bolt x 4
Double clevis	1	LEY-D016	LEY-D025	LEY-D032	LEY-D063	Levis x Mounting bolt x 4 Clevis pin x 1 Type C retaining ring for axis x 2

[^8]
Double Knuckle Joint

Part no.	Applicable size	A	A1	E_{1}	L1	MM	R1
Y-G02	16	34	8.5	$\square 16$	25	M8 x 1.25	10.3
Y-G04	25, 32, 40	42	16	ø22	30	M14 $\times 1.5$	12
Y-G05	63	56	20	$ø 28$	40	M18 $\times 1.5$	16
Part no.	Applicable size	\mathbf{U}_{1}	NDH10	NX	NZ	L	cable art no.
Y-G02	16	11.5	$8{ }_{0}^{+0.058}$	$8_{+0.2}^{+0.4}$	16	21	G02
Y-G04	25, 32, 40	14	$10^{+0.058}$	$18_{+0.3}^{+0.5}$	36	41.6	G04
Y-G05	63	20	$14^{+0.070}$	$22+0.5$	44	50.6	G05

Rod End Nut

Material: Carbon steel

							[mm]
Part no.	Applicable size	\mathbf{d}	\mathbf{H}	\mathbf{B}	\mathbf{C}		
NT-02	$\mathbf{1 6}$	$\mathrm{M} 8 \times 1.25$	5	13	15.0		
NT-04	$\mathbf{2 5 , 3 2 , 4 0}$	$\mathrm{M} 14 \times 1.5$	8	22	25.4		
NT-05	$\mathbf{6 3}$	$\mathrm{M} 18 \times 1.5$	11	27	31.2		

Accessory Mounting Brackets LEY Series

Simple Joint Brackets

* The joint is not included in type A and type B mounting brackets. Therefore, it must be ordered separately.

Joint and Mounting Bracket (Type A/B)/Part No.

Type B Mounting Bracket

Type B Mounting Bracket

Material: Stainless steel [mm]

Part no.	Applicable size	\mathbf{B}	\mathbf{D}	\mathbf{E}	\mathbf{J}	\mathbf{M}	$\boldsymbol{0}$
YB-03	$\mathbf{2 5}, \mathbf{3 2 , 4 0}$	12	7	25	9	34	11.5 depth 7.5
Part no.	Applicable size	\mathbf{T}_{1}	\mathbf{T}_{2}	\mathbf{V}	\mathbf{W}	$\mathbf{R S}$	Weight $[g]$
YB-03	$\mathbf{2 5 , 3 2 , 4 0}$	6.5	10	18	50	9	80

Floating Joints (Refer to the Web Catalog for details.)

- For Male Thread/JC

(Light weight type)
-With the aluminum case

-For Male Thread/JS (Stainless steel)

- Stainless steel 304
(Appearance)

- Dust cover

Fluororubber/Silicone rubber

-For Male Thread/JA

-For Female Thread/JB

LEY Series
 Auto Switch Mounting

Proper Auto Switch Mounting Position

Applicable auto switches: D-M9 \square (V), D-M9 $\square E(V)$, $D-M 9 \square W(V), D-M 9 \square A(V)$

Size	Stroke range	Auto switch position				Return to origin distance	Operating range
		Mounting: Left facing		Mounting: Right facing			
		A	B	C	D	E	-
16	10 to 100	21.5	46.5	33.5	34.5	(2)	2.9
	105 to 300	41.5		53.5			
25	15 to 100	27	62.5	39	50.5	(2)	4.2
	105 to 400	52		64			
32/40	20 to 100	30.5	65.5	42.5	53.5	(2)	4.9
	105 to 500	60.5		72.5			
63	50 to 200	37	86	49	74	(4)	9.8
	205 to 500	72		84			
	505 to 800	107		119			

*1 Figures in the table above are used as a reference when mounting the auto switches for stroke end detection. Adjust the auto switch after confirming the operating condition in the actual setting.
*2 Switches cannot be mounted on the motor mounting side surface.
*3 For the LEYG with a guide, switches cannot be mounted on the guide attachment side (rod side).
$* 4$ Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approximately $\pm 30 \%$ dispersion). It may change substantially depending on the ambient environment.

Auto Switch Mounting

Auto Switch Mounting Screw
Tightening Torque
Tightening Torque

Auto switch model	Tightening torque
D-M9 $\square(\mathbf{V})$	
D-M9 $\square \mathbf{E}(\mathbf{V})$	0.05 to 0.15
D-M9 $\square \mathbf{W}(\mathbf{V})$	
D-M9 $\square \mathbf{A}(\mathbf{V})$	0.05 to 0.10

* When tightening the auto switch mounting screw (included with auto switch), use a watchmaker's screwdriver with a handle diameter of about 5 to 6 mm .

Solid State Auto Switch Direct Mounting Type D-M9N(V)/D-M9P(V)/D-M9B(V) C ϵ

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications
Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square, D-M9 \square V (With indicator light)						
Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VD	or less			24 VDC (10	to 28 VDC$)$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when turned ON.					
Standard	CE marking, RoHS					

Oilproof Heavy-duty Lead Wire Specifications

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Sheath	Outside diameter $[\mathrm{mm}]$	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $\left[\mathrm{mm}{ }^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius [mm] (Reference values)		17		

* Refer to the Web Catalog for solid state auto switch common specifications
* Refer to the Web Catalog for lead wire lengths.

Weight

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

D-M9 \square V

Normally Closed Solid State Auto Switch

 Direct Mounting TypeD-M9NE(V)/D-M9PE(V)/D-M9BE(V) (\in RoHs

Grommet

- Output signal turns on when no magnetic force is detected.
- Can be used for the actuator adopted by the solid state auto switch D-M9 series (excluding special order products)

\triangle Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller
D-M9■E, D-M9■EV (With indicator light)

Auto switch model	D-M9NE	D-M9NEV	D-M9PE	D-M9PEV	D-M9BE	D-M9BEV

Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular

Wiring type	3-wire		2-wire
Output type	NPN	PNP	-

Applicable load	IC circuit, Relay, PLC	-
Power supply voltage	$5,12,24 \mathrm{VDC}(4.5$ to 28 V$)$	-
Current consumption	10 mA or less	-
Load voltage	28 VDC or less	$24 \mathrm{VDC}(10$ to 28 VDC$)$
Load current	40 mA or less	2.5 to 40 mA
Internal voltage drop	0.8 V or less at $10 \mathrm{~mA}(2 \mathrm{~V}$ or less at 40 mA$)$	4 V or less
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC	0.8 mA or less
Indicator light	Red LED illuminates when turned ON.	
Standard	CE marking, RoHS	

Oilproof Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Sheath	Outiside diameter [mm]	2.6		
Insulator	Number of cores	3 cores (B	lue/Black)	2 cores (Brown/Blue)
	Outside diameter [mm]	0.88		
Conductor	Effective area [mm²]	0.15		
	Strand diameter [mm]	0.05		
Minimum bending radius [mm] (Referenence values)		17		

* Refer to the Web Catalog for solid state auto switch common specifications.
* Refer to the Web Catalog for lead wire lengths.

Weight

[g]

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})^{* 1}$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})^{* 1}$	68	63	

*1 The 1 m and 5 m options are produced upon receipt of order.

D-M9 $\square E V$

2-Color Indicator Solid State Auto Switch Direct Mounting Type

D-M9NW(V)/D-MMPW(V)/D-M9BW(V) C ϵ

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square W, D-M9 \square WV (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC	or less		-	24 VDC (1	to 28 VDC)
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range \qquad Red LED illuminates. Proper operating range \qquad Green LED illuminates.					
Standard	CE marking, RoHS					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
Sheath	Outside diameter $[\mathrm{mm}]$	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius [mm] (Reference values)				

* Refer to the Web Catalog for solid state auto switch common specifications.
* Refer to the Web Catalog for lead wire lengths.

Weight

Auto switch model				D-M9NW(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	D-M9PW(V)	D-M9BW(V)
	$1 \mathrm{~m}(\mathbf{M})$	14		13
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m} \mathrm{(Z)}$	68	63	

D-M9 $\square \mathbf{W}$

D-M9 $\square W V$

Step Motor/Servo Motor Controller/Driver p. 188
 AC Servo Motor Driver p. 252

LEYG Series $>$ p. 121

Moment Load Graph

Selection conditions

Mounting position		Vertical	Horizontal	
Max. speed [mm/s]		"Speed-Work Load Graph"	200 or less	Over 200
Bearing	Sliding bearing	Graphs (1), (2)	Graphs (5), (6)*1	-
	Ball bushing bearing	Graphs (3), (4)	Graphs (7), 8)	Graphs (9), 10)

*1 For the sliding bearing type, the speed is restricted with a horizontal/moment load.
Vertical Mounting, Sliding Bearing

* The limit of vertical load mass varies depending on "lead" and "speed."

Check "Speed-Work Load Graph" on pages 107 to 109.
Vertical Mounting, Ball Bushing Bearing

Moment Load Graph

Horizontal Mounting, Sliding Bearing

(6) $\mathrm{L}=100 \mathrm{~mm}$

* Set the speed to less than or equal to the values shown below.

Motor type
Step motor (Servo/24 VDC)
Servo motor (24 VDC)

LEYG \square M $\square \mathbf{A}$	LEYG \square M \square B
$200 \mathrm{~mm} / \mathrm{s}$	$125 \mathrm{~mm} / \mathrm{s}$
$200 \mathrm{~mm} / \mathrm{s}$	$200 \mathrm{~mm} / \mathrm{s}$

LEYG $\square \mathbf{M} \square \mathbf{C}$ * For the specifications below, operate the system at the "load mass" shown in the graph x 80\%.

- LEYG25MAA/Servo motor (24 VDC), Lead 12

Horizontal Mounting, Ball Bushing Bearing

(9) $L=50 \mathbf{~ m m}$ Max. speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

(8) $L=\mathbf{1 0 0} \mathbf{~ m m ~ M a x . ~ s p e e d ~}=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(10) $L=100 \mathrm{~mm}$ Max. speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

Operating Range when Used as a Stopper

LEYG $\square \mathrm{M}$ (Sliding bearing)

\triangle Caution

Handling Precautions

* When used as a stopper, select a model with a stroke of 30 mm or less.
* LEYG \square L (ball bushing bearing) cannot be used as a stopper.
* Workpiece collision in series with guide rod cannot be permitted (Fig. a)
* The body should not be mounted on the end. It must be mounted on the top or bottom (Fig. b).

Fig

Fig. b

LEYG Series

Step Motor (Servo/24 VDC)

These graphs show the work load when the external guide is used together. When using the LEYG alone, refer to pages 105 and 106.

Refer to page 108 for the LECPA, JXC \square_{3}^{2} and page 109 for the LECA6.

Speed-Work Load Graph (Guide)
For Step Motor (Servo/24 VDC) LECP6, LECP1, LECPMJ, JXC $\square 1$

Horizontal

LEYG16눈
$\nabla \lambda$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG25 ${ }^{\text {M }}$ [
$\square \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG32 ${ }^{\text {M }} \square$
$\square \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG40 ${ }_{\text {M }}$ ■
$\nabla \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

Vertical

LEYG16M \square

LEYG25 ${ }^{\text {M }} \square$

LEYG32 ${ }_{\mathrm{L}}^{\mathrm{L}} \square$

LEYG40M \square

LEYG25 ${ }_{\text {M }} \square$ $\square \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG32ㅆㄴㄴ \square $\nabla \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG40 ${ }_{\mathrm{L}}^{\mathrm{M}} \square$

Vertical
 LEYG16 ${ }^{\text {M }} \square$

LEYG25 ${ }_{\text {M }} \square$

LEYG32 ${ }_{\text {L }} \square$

LEYG40M \square

LEYG Series

Step Motor (Servo/24 VDC) Servo Motor (24 VDC)

Speed-Work Load Graph (Guide)
 For Servo Motor (24 VDC) LECA6

Refer to page 107 for the LECP6, LECP1, LECPMJ, JXC $\square 1$ and page 108 for the LECPA, JXC \square_{3}^{2}.

Horizontal

LEYG16는 \square A

LEYG25 ${ }_{\text {M }} \square \mathbf{A}$

Vertical

LEYG16 ${ }_{\text {M }} \square$ A

LEYG25 ${ }_{\mathrm{L}}^{\mathrm{M}} \square \mathrm{A}$

Force Conversion Graph (Guide)

Step Motor (Servo/24 VDC)

LEYG16 ${ }_{\text {L }} \square$

Ambient temperature	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]]
$\mathbf{2 5} 5^{\circ} \mathbf{C}$ or less	85 or less	100	-
$\mathbf{4 0} \mathbf{C}$	40 or less	100	-
	50	70	12
	70	20	1.3
	85	15	0.8

LEYG25 ${ }_{\mathrm{L}}^{\mathrm{L}} \square$

| Ambient temperature | Set value of pushing force [\%] | Duty ratio [\%] | Continuous pushing time [minute] |
| :--- | :--- | :--- | :--- | | $40^{\circ} \mathrm{C}$ or less | 65 or less | 100 | - |
| :---: | :---: | :---: | :---: |

LEYG32 ${ }_{\mathrm{L}} \square$

LEYG40 ${ }_{\mathrm{L}} \square$

| Ambient temperature | Set value of pushing force [\%] | Duty ratio [\%] | Continuous pushing time [minute] |
| :--- | :--- | :--- | :--- | | $40^{\circ} \mathrm{C}$ or less | 65 or less | 100 |
| :--- | :--- | :--- |

*1 Set values for the controller

Servo Motor (24 VDC)

LEYG16 ${ }_{\mathrm{L}}^{\mathrm{M}}$ A \square

Ambient temperature	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]
$\mathbf{4 0} \mathbf{}^{\circ} \mathbf{C}$ or less	95 or	100	-

Ambient temperature	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]				
$\mathbf{4 0}$					$40^{\circ} \mathrm{C}$ or less	95 or less	100
:---:	:---:	:---:					

<Limit Values for Pushing Force and Trigger Level in Relation to Pushing Speed>

Without Load

Model	Lead	Pushing speed [mm/s]	Pusting force (Seting innut value)	Model	Lead	Pushing speed [mm/s]	Pushing force (Setting input value)
LEYG16 ${ }_{\text {L }}$	A/B/C	21 to 50	60 to 85%	LEYG16LIIIA	A/B/C	21 to 50	80 to 95\%
LEYG25 ${ }_{\text {L }}$	A/B/C	21 to 35	50 to 65\%	LEYG25LIICA	A/B/C	21 to 35	80 to 95%
LEYG32 ${ }_{\text {L }}$	A	24 to 30	60 to 85\%				
	B/C	21 to 30					
LEYG40L	A	24 to 30	50 to 65\%				
	B/C	21 to 30					

There is a limit to the pushing force in relation to the pushing speed. If the product is operated outside of the range (low pushing force), the completion signal [INP] may be output before the pushing operation has been completed (during the moving operation).
If operating with the pushing speed below the min. speed, please check for operating problems before using the product.
<Set Values for Vertical Upward Transfer Pushing Operations>
For vertical loads (upward), set the pushing force to the max. value shown below and operate at the work load or less.

Model	LEYG16 ${ }_{\text {M }}$			LEYG25L \square			LEYG32 ${ }_{\text {W }}$ -			LEYG40 ${ }^{\text {M }}$			LEYG16 ${ }^{\text {W }} \square \mathrm{A}$			LEYG25 ${ }_{\text {M }} \square \mathrm{A}$		
Lead	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C
Work load [kg]	0.5	1	2.5	1.5	4	9	2.5	7	16	5	12	26	0.5	1	2.5	0.5	1.5	4
Pushing force	85\%			65\%			85\%			65\%			95\%			95\%		

AC Servo Motor LECS \square Series

Electric Actuator/Guide Rod Type

LEYG Series

Model Selection

LEYG Series \downarrow p. 135 LECY \square Series \downarrow p. 143

Moment Load Graph

Selection conditions

Mounting position		Vertical	Horizontal	
Max. speed [mm/s]		"Speed-Vertical Work Load Graph"	200 or less	Over 200
Bearing	Sliding bearing	Graphs (1), (2)	Graphs (5), (6)*1	Graphs (7), 88
	Ball bushing bearing	Graphs (3), (4)	Graphs (9), 10)	Graphs (11), 12

*1 For the sliding bearing type, the speed is restricted with a horizontal/moment load.
Vertical Mounting, Sliding Bearing

* The limit of vertical load mass varies depending on "lead" and "speed."

Check "Speed-Vertical Work Load Graph" on page 113.
Vertical Mounting, Ball Bushing Bearing

Moment Load Graph

Horizontal Mounting, Sliding Bearing

(7) $L=50$ mm Max. speed $=$ Over 200 mm/s

(6) $L=\mathbf{1 0 0} \mathbf{~ m m}$ Max. speed $=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(8) $L=\mathbf{1 0 0} \mathbf{~ m m}$ Max. speed $=$ Over $\mathbf{2 0 0}$ mm/s

Horizontal Mounting, Ball Bushing Bearing
(9) $L=\mathbf{5 0} \mathbf{~ m m ~ M a x . ~ s p e e d ~}=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(11) $L=50 \mathrm{~mm}$ Max. speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

(10) $L=100 \mathrm{~mm}$ Max. speed $=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(12) $L=100 \mathrm{~mm}$ Max. speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

Operating Range when Used as a Stopper

LEYG $\square \mathrm{M}$ (Sliding bearing)

LEYG Series

These graphs show the work load when the external guide is used together. When using the LEYG alone, refer to pages 111 and 112.

LEYG25 $\square \mathbf{S}_{6}^{2} / \mathrm{T} 6$ (Motor mounting position: Top mounting/ln-line)

LEYG32S ${ }_{7}^{3}$ /T7 (Motor mounting position: Top mounting)

Required conditions for "Regeneration option"

* Regeneration option is required when using product above regeneration line in graph. (Order separately.)
"Regeneration Option" Models

Size	Model
LEYG25 \square	LEC-MR-RB-032
LEYG32 \square	LEC-MR-RB-032

LEYG32DS ${ }_{7}^{3}$ /T7 (Motor mounting position: In-line)

Speed-Horizontal Work Load Graph/Required Conditions for "Regeneration Option" "
These graphs show the work load when the external guide is used together. When using the LEYG alone, refer to pages 111 and 112.

LEYG25 $\square \mathbf{S}_{6}^{2} / \mathrm{T} 6$ (Motor mounting position: Top mounting/ln-line)

LEYG32S ${ }_{7}^{3} / \mathrm{T} 7$ (Motor mounting position: Top mounting)

Required conditions for "Regeneration option"

* Regeneration option is required when using product above regeneration line in graph. (Order separately.)

"Regeneration Option" Models

Size	Model
LEYG25 \square	LEC-MR-RB-032
LEYG32 \square	LEC-MR-RB-032

LEYG32DS ${ }_{7}^{3} / \mathrm{T} 7$ (Motor mounting position: In-line)

Force Conversion Graph: LECSA, LECSB, LECSC, LECSS

LEYG25 $\square \mathbf{S}_{6}^{2}$ (Motor mounting position: Top mounting/ln-line)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
25 or less	100	-
30	60	1.5

LEYG32S ${ }_{7}^{3}$ (Motor mounting position: Top mounting)

LEYG32DS ${ }_{7}^{3}$ (Motor mounting position: In-line)

Force Conversion Graph: LECSS-T

LEYG25 \square T6 (Motor mounting position: Top mounting/ln-line)

LEYG32T7 (Motor mounting position: Top mounting)

LEYG32DT7 (Motor mounting position: In-line)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]]
20 or less	100	-
24	60	1.5

LEYG Series

AC Servo Motor

Allowable Rotational Torque of Plate

Model	T $[\mathrm{N} \cdot \mathrm{m}]$				
	30	50	100	200	300
LEYG16M	0.70	0.57	1.05	0.56	-
LEYG16L	0.82	1.48	0.97	0.57	-
LEYG25M	1.56	1.29	3.50	2.18	1.36
LEYG25L	1.52	3.57	2.47	2.05	1.44
LEYG32M	2.55	2.09	5.39	3.26	1.88
LEYG32L	2.80	5.76	4.05	3.23	2.32
LEYG40M	2.55	2.09	5.39	3.26	1.88
LEYG40L	2.80	5.76	4.05	3.23	2.32

Non-rotating Accuracy of Plate

Size	Non-rotating accuracy θ	
	LEYG $\square \mathbf{M}$	LEYG $\square \mathbf{L}$
$\mathbf{1 6}$	0.06°	0.05°
$\mathbf{2 5}$	0.05°	0.04°
$\mathbf{3 2}$		
$\mathbf{4 0}$		

Plate Displacement: δ

AC Servo Motor LECY \square Series

Electric Actuator/Guide Rod Type

LEYG Series
Model Selection

LEYG Series \downarrow p. $143 \quad$ LECS \square Series \downarrow p. 135

Moment Load Graph

Selection conditions

Mounting position		Vertical	Horizontal	
Max. speed [mm/s]		"Speed-Work Load Graph"	200 or less	Over 200
Bearing	Sliding bearing	Graphs (1), (2)	Graphs (5), (6)*1	Graphs (7), 8)
	Ball bushing bearing	Graphs (3), (4)	Graphs (9), (10)	Graphs (11), 12)

* The limit of vertical load mass varies depending on "lead" and "speed."

Check "Speed-Work Load Graph" on page 118.
Vertical Mounting, Ball Bushing Bearing

LEYG Series

AC Servo Motor

Moment Load Graph

Horizontal Mounting, Sliding Bearing

(5) $L=\mathbf{5 0} \mathbf{~ m m ~ M a x . ~ s p e e d ~}=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(7) $L=50$ mm Max. speed $=$ Over 200 mm/s

(6) $L=\mathbf{1 0 0} \mathbf{~ m m ~ M a x . ~ s p e e d ~}=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(8) $L=100$ mm Max. speed $=$ Over 200 mm/s

Horizontal Mounting, Ball Bushing Bearing
(9) $L=\mathbf{5 0} \mathbf{~ m m ~ M a x . ~ s p e e d ~} \mathbf{=} \mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(11) $L=50 \mathrm{~mm}$ Max. speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

(10) $L=100 \mathrm{~mm}$ Max. speed $=200 \mathrm{~mm} / \mathrm{s}$ or less

(12) $L=100 \mathrm{~mm}$ Max. speed $=$ Over $\mathbf{2 0 0}$ mm/s

Operating Range when Used as a Stopper

LEYG $\square \mathrm{M}$ (Sliding bearing)

LEYG25 \square V6 (Motor mounting position: Top mounting/In-line)

Vertical

Horizontal

LEYG32V7 (Motor mounting position: Top mounting)

Vertical

Horizontal

LEYG32DV7 (Motor mounting position: In-line)

Vertical

"Regenerative resistor" area

* When using the actuator in the "Regenerative resistor" area, download the "AC servo drive capacity selection program/SigmaJunmaSize+" from the SMC website. Then, calculate the necessary regenerative resistor capacity to prepare an appropriate external regenerative resistor.
* Regenerative resistor should be provided by the customer.

Horizontal

Applicable Motor/Driver

Model	Applicable model	
	Motor	Servopack (SMC driver)
LEYG25 \square	SGMJV-01A3A	SGDV-R90A11 \square (LECYM2-V5) SGDV-R90A21 \square (LECYU2-V5)
LEYG32 \square	SGMJV-02A3A	SGDV-1R6A11 \square (LECYM2-V7) SGDV-1R6A21 \square (LECYU2-V7)

LEYG Series

AC Servo Motor

Force Conversion Graph

LEYG25 \square V6 (Motor mounting position: Top mounting/ln-line)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
75 or less	100	-
90	60	1.5

LEYG32 \square V7 (Motor mounting position: Top mounting)

LEYG32DV7 (Motor mounting position: In-line)

Model Selection LEYG Series

AC Servo Motor

Allowable Rotational Torque of Plate: T

Model	T [N•m]				
	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$	$\mathbf{3 0 0}$
LEYG25M	1.56	1.29	3.50	2.18	1.36
LEYG25L	1.52	3.57	2.47	2.05	1.44
LEYG32M	2.55	2.09	5.39	3.26	1.88
LEYG32L	2.80	5.76	4.05	3.23	2.32

Non-rotating Accuracy of Plate: θ

Size	LEYG $\square \mathbf{M}$	LEYG $\square \mathbf{L}$
$\mathbf{2 5}$	$\pm 0.06^{\circ}$	$\pm 0.04^{\circ}$
$\mathbf{3 2}$	$\pm 0.05^{\circ}$	

Plate Displacement: δ

Model	Stroke [mm]				
	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$	$\mathbf{3 0 0}$
LEYG25M	± 0.26	± 0.31	± 0.25	± 0.38	± 0.36
LEYG25L	± 0.13	± 0.13	± 0.17	± 0.20	± 0.23
LEYG32M	± 0.23	± 0.29	± 0.23	± 0.36	± 0.34
LEYG32L	± 0.11	± 0.11	± 0.15	± 0.19	± 0.22

Electric Actuator/ Guide Rod Type LEYG Series LEvG16, 25,32,40

Motor mounting position: Top mounting Motor mounting position: In-line

(3) Motor mounting position

\mathbf{M}	Sliding bearing
\mathbf{L}	Ball bushing bearing

Nil	Top mounting
\mathbf{D}	In-line

(4) Motor type

Symbol	Type	Applicable size			Compatible controller/ driver
		LEYG16	LEYG25	LEYG32/40	
Nil	Step motor (Servo/24 VDC)	-	-	\bigcirc	LECP6 JXCE1 LECP1 JXC91 LECPA JXCP1 LECPMJ JXCD1 JXCL1
A	Servo motor (24 VDC)	\bigcirc	\bigcirc	-	LECA6

Lead [mm]

Symbol	LEYG16	LEYG25	LEYG32/40
A	10	12	16
\mathbf{B}	5	6	8
\mathbf{C}	2.5	3	4

Stroke ${ }^{* 2 * 3}$ [mm]

$\mathbf{3 0}$	30
to	to
$\mathbf{3 0 0}$	300

* For details, refer to the applicable stroke table below.
$\left(7\right.$ Motor option ${ }^{* 4}$

Nil	Without option
\mathbf{C}	With motor cover
\mathbf{B}	With lock
W	With lock/motor cover

8 Guide option*5

Nil	Without option
\mathbf{F}	With grease retaining function

Actuator cable type/length*7

Standard cable [m]		
Nil	None	
S1	$1.5^{* 9}$	
S3	$3^{* 9}$	
S5	$5^{* 9}$	

Robotic cable

R1	1.5	RA	$10 * 6$	
R3	3	RB	$15^{* 6}$	
R5	5	RC	$20 * 6$	
R8	$8^{* 6}$			

Applicable Stroke Table*2

- Standard

Stroke	30	50	100	150	200	250	300	Manufacturable stroke range [mm]
LEYG16	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	10 to 200
LEYG25	\bigcirc	15 to 300						
LEYG32/40	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	20 to 300

For auto switches, refer to pages 101 to 103.

[^9]Step Motor (Servo/24 VDC) Servo Motor (24 VDC)
10 Controller/Driver type*8

Nil	Without controller/driver	
6N	LECP6/LECA6	NPN
6P	(Step data input type)	PNP
1N	LECP1*9 (Programless type)	NPN
1P		PNP
MJ	LECPMJ*9 $* 10$ (CC-Link direct input type)	
AN	$\begin{gathered} \text { LECPA } * 9 * 11 \\ \text { (Pulse input type) } \end{gathered}$	NPN
AP		PNP

$J X C \square$ Series (For details, refer to page 123.)

Nil	Without controller
C $\square 1 \square \square$	With controller
:	

$11 \mathrm{I} / \mathrm{O}$ cable length ${ }^{* 12}$, Communication plug

$\mathbf{N i l}$	Without cable
	(Without communication plug connector)*14
$\mathbf{1}$	1.5 m
$\mathbf{3}$	$3 \mathrm{~m}^{* 13}$
$\mathbf{5}$	$5 \mathrm{~m}^{* 13}$
\mathbf{S}	Straight type communication plug connector*14
\mathbf{T}	T-branch type communication plug connector*14

 plug connector
for DeviceNet ${ }^{\text {TM }}$ *16

- Mounting

$\mathbf{7}$	Screw mounting
$\mathbf{8}^{* 15}$	DIN rail

Nil	Without plug connector
\mathbf{S}	Straight type
\mathbf{T}	T-branch type

- For single axis
*1 When [M: Sliding bearing] is selected, the maximum speed of lead [A] is $400 \mathrm{~mm} / \mathrm{s}$ (at no-load, horizontal mounting). The speed is also restricted with a horizontal/moment load. Refer to "Model Selection" on page 105.
*2 Please consult with SMC for non-standard strokes as they are produced as special orders.
*3 There is a limit for mounting the size 32/40 top mounting types and strokes of 50 mm or less. Refer to the dimensions.
*4 When "With lock" or "With lock/motor cover" is selected for the top mounting type, the motor body will stick out from the end of the body for size $16 / 40$ with strokes of 30 mm or less. Check for interference with workpieces before selecting a model.
*5 Only available for size 25, 32, and 40 sliding bearings (Refer to "Construction" on page 128.)
*6 Produced upon receipt of order (Robotic cable only)
*7 The standard cable should only be used on fixed parts. For use on moving parts, select the robotic cable.
*8 For details on controllers/drivers and compatible motors, refer to the compatible controller/driver on the next page.
*9 Only available for the motor type "Step motor"
*10 Not compliant with CE
*11 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- \square) on page 218 separately
*12 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 197 (For LECP6/ LECA6), page 211 (For LECP1), or page 218 (For LECPA) if I/O cable is required.
*13 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector
*14 For the LECPMJ, only "Nil," "S," and "T" are selectable since I/O cable is not included.
*15 The DIN rail is not included. Order it separately.
*16 Select "Nil" for anything other than DeviceNet ${ }^{\text {TM }}$.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and actuator is correct.
<Check the following before use.>
(1) Check the actuator label for the model number. This number should match that of the controller/driver.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

* Refer to the Operation Manual for using the products. Please download it via our website, https://www.smcworld.com

LEYG Series

Step Motor (Servo/24 VDC)

Compatible Controller/Driver

LEC \square Series

Type	Step data input type	Step data input type	CC-Link direct input type	Programless type	Pulse input type
Series	LECP6	LECA6	LECPMJ	LECP1	LECPA
Features	Value (Step data) input Standard controller		CC-Link direct input	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Servo motor (24 VDC)	Step motor (Servo/24 VDC)		
Max. number of step data	64 points			14 points	-
Power supply voltage	24 VDC				
Reference page	189	189	222	205	212

JXC \square Series

Type	EtherCAT ${ }^{\circledR}$ direct input type	EtherNet/IPTM direct input type	PROFINET direct input type	DeviceNet ${ }^{\text {TM }}$ direct input type	IO-Link direct input type
Series	JXCE1	JXC91	JXCP1	JXCD1	JXCL1
Features	EtherCAT ${ }^{\circledR}$ direct input	EtherNet/IPTM direct input	PROFINET direct input	DeviceNet ${ }^{\text {TM }}$ direct input	IO-Link direct input
Compatible motor	Step motor (Servo/24 VDC)				
Max. number of step data	64 points				
Power supply voltage	24 VDC				
Reference page	230				

Specifications

Step Motor (Servo/24 VDC)

Model				LEYG16L ${ }_{\text {M }}$			LEYG25 ${ }_{\text {L }}$			LEYG32 ${ }_{\text {L }}$			LEYG40 ${ }_{\text {L }}$		
	Work load $[\mathrm{kg}]^{* 1}$	Hoizonta(LECP6,(LECP1,LECPMJJ,JXCII)	$\begin{gathered} \text { Acceleration/Deceleration } \\ \text { at } 3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right] \end{gathered}$	6	17	30	20	40	60	30	45	60	50	60	80
			$\left\|\begin{array}{c} \text { AccelerationNDeceleration } \\ \text { at 2000 [mmss? } \end{array}\right\|$	10	23	35	30	55	70	40	60	80	60	70	90
			$\begin{aligned} & \text { Acceleration\|Deceleration } \\ & \text { at } 3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right] \end{aligned}$	4	11	20	12	30	30	20	40	40	30	60	60
			$\begin{aligned} & \text { Acceleration/Decclelation } \\ & \text { at } 2000\left[\mathrm{~mm} / \mathrm{s}^{2}\right] \end{aligned}$	6	17	30	18	50	50	30	60	60	-	-	-
		Vertical	$\begin{array}{\|c\|} \hline \text { Acceleration/Deccleration } \\ \text { at } 3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right] \end{array}$	1.5	3.5	7.5	7	15	29	9	20	41	11	25	51
$\stackrel{0}{2}$	Pushing force [N$]^{* 2 * 3 * 4}$			14 to 38	27 to 74	51 to 141	63 to 122	126 to 238	232 to 452	80 to 189	156 to 370	296 to 707	132 to 283	266 to 553	562 to 1058
$\left\|\begin{array}{c} \vdots \\ \vdots \\ \mathbf{y} \end{array}\right\|$	Speed $[\mathrm{mm} / \mathrm{s}]^{* 4}$		CP6/LECP1/ PMJ/JXC $\square 1$	15 to 500	8 to 250	4 to 125	18 to 500	9 to 250	5 to 125	24 to 500	12 to 300	6 to 150	24 to 500	12 to 350	6 to 175
苍			CPA/JXC $\square \frac{2}{3}$								12 to 250	6 to 125	24 to 300	12 to 150	6 to 75
<	Max. acceleration/deceleration [mm/s²]			3000											
	Pushing speed [mm/s]*5			50 or less			35 or less			30 or less			30 or less		
	Positioning repeatability [mm]			± 0.02											
	Lost motion [mm]*6			0.1 or less											
	Screw lead [mm]			10	5	2.5	12	6	3	16	8	4	16	8	4
	ImpactVibration resistance [$\left.\mathrm{m} / \mathrm{s}^{2}\right]^{* 7}$			50/20											
	Actuation type			Ball screw + Belt (LEYGПП), Ball screw (LEYG											
	Guide type			Sliding bearing (LEYG \square M), Ball bushing bearing (LEYG $\square \mathrm{L}$)											
	Operating	g temp.	p. range [${ }^{\circ} \mathrm{C}$]	5 to 40											
	Operating humidity range [\%RH]			90 or less (No condensation)											
	Motor size			$\square 28$			$\square 42$			$\square 56.4$			$\square 56.4$		
	Motor type			Step motor (Servo/24 VDC)											
	Encoder			Incremental A/B phase (800 pulse/rotation)											
	Rated voltage [V]			24 VDC $\pm 10 \%$											
	Power consumption [W]*8			23			40			50			50		
	Standby power consumption when operaing [W]*9			16			15			48			48		
	$\underset{\text { W }}{ }$ Max. instantaneous power consumption [W]*10			43			48			104			106		
Type*11				Non-magnetizing lock											
\% ${ }_{\text {\% }}$ Holding force [N$]$				20	39	78	78	157	294	108	216	421	127	265	519
Power consumption [W]*12				2.9			5			5			5		
Rated voltage [V]				24 VDC $\pm 10 \%$											

*1 Horizontal: An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load and transfer speed change according to the condition of the external guide. Also, speed changes according to the work load. Check "Model Selection" on pages 107 and 108.

Vertical: Speed changes according to the work load. Check "Model Selection" on pages 107 and 108.
Set the acceleration/deceleration values to be $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ or less.
$* 2$ Pushing force accuracy is $\pm 20 \%$ (F.S.).
*3 The pushing force values for LEYG16 $\square \square$ is 35% to 85%, for LEYG25 $\square \square$ is 35% to 65%, for LEYG32 $\square \square$ is 35% to 85%, and for LEYG40 $\square \square$ is 35% to 65%. The pushing force values change according to the duty ratio and pushing speed. Check "Model Selection" on page 110.
*4 The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20\%)
When [M: Sliding bearing] is selected, the maximum speed of lead [A] is $400 \mathrm{~mm} / \mathrm{s}$ (at no-load, horizontal mounting).
The speed is also restricted with a horizontal/moment load. Refer to "Model Selection" on page 105.
*5 The allowable speed for the pushing operation
*6 A reference value for correcting an error in reciprocal operation
*7 Impact resistance: No malfunction occurred when it was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*8 The power consumption (including the controller) is for when the actuator is operating.
*9 The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation. Except during the pushing operation
*10 The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
*11 With lock only
*12 For an actuator with lock, add the power consumption for the lock.

Specifications

Servo Motor (24 VDC)

Model				LEYG16 ${ }_{\text {L }} \square \mathbf{A}$			LEYG25 ${ }_{\text {L }} \square \mathbf{A}$		
	Work load [kg]* ${ }^{* 1}$	Horizonita	Acceleration/Deceleration at $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	3	6	12	7	15	30
		Verical	Acceleration/Deceleration at $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	1.5	3.5	7.5	2	5	11
	Pushing force [N]*2 *3			16 to 30	30 to 58	57 to 111	18 to 35	37 to 72	66 to 130
	Speed [mm/s]			1 to 500	1 to 250	1 to 125	2 to 500	1 to 250	1 to 125
	Max. acceleration/deceleration [mm/s²]			3000					
	Pushing speed [mm/s]*4			50 or less			35 or less		
	Positioning repeatability [mm]			± 0.02					
	Lost motion [mm]*5			0.1 or less					
	Screw lead [mm]			10	5	2.5	12	6	3
	ImpactVibration resistance $\left[\mathrm{m} / \mathrm{s}^{2}\right]^{*}{ }^{* 6}$			50/20					
	Actuation type			Ball screw + Belt (LEYG $\square \square$), Ball screw (LEYG $\square \square \mathrm{D}$)					
	Guide type			Sliding bearing (LEYG $\square \mathrm{M}$), Ball bushing bearing (LEYG $\square \mathrm{L}$)					
	Operating temp. range [${ }^{\circ} \mathrm{C}$]			5 to 40					
	Operating humidity range [\%RH]			90 or less (No condensation)					
Electric specifications	Motor size			$\square 28$			$\square 42$		
	Motor output [W]			30			36		
	Motor type			Servo motor (24 VDC)					
	Encoder			Incremental A/B (800 pulse/rotation)/Z phase					
	Rated voltage [V]			24 VDC $\pm 10 \%$					
	Power consumption [W] ${ }^{* 7}$			40			86		
	Standby power consumption when operating [W]*8			4 (Horizontal)/6 (Vertical)			4 (Horizontal)/12 (Vertical)		
	Max. instantaneous power consumption [W] ${ }^{* 9}$			59			96		
-	Type*10			Non-magnetizing lock					
它	Holding force [N]			20	39	78	78	157	294
年	Power consumption [W]*11			2.9			5		
	Rated voltage [V]			24 VDC $\pm 10 \%$					

*1 Horizontal: An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load and transfer speed change according to the condition of the external guide.
Vertical: Check "Model Selection" on page 109 for details.
Set the acceleration/deceleration values to be 3000 [$\mathrm{mm} / \mathrm{s}^{2}$] or less.
*2 Pushing force accuracy is $\pm 20 \%$ (F.S.).
*3 The thrust setting values for LEYG16 $\square \square$ is 60% to 95% and for LEYG25 $\square \square$ is 70% to 95%. The pushing force values change according to the duty ratio and pushing speed. Check "Model Selection" on page 110.
*4 The allowable speed for the pushing operation
*5 A reference value for correcting an error in reciprocal operation
*6 Impact resistance: No malfunction occurred when it was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*7 The power consumption (including the controller) is for when the actuator is operating.
*8 The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation. Except during the pushing operation
*9 The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
*10 With lock only
*11 For an actuator with lock, add the power consumption for the lock.

Weight

Weight: Motor Top Mounting Type

Model		LEYG16M					LEYG25M							LEYG32M						
Stroke [mm]		30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight [kg]	Step motor	0.83	0.97	1.20	1.49	1.66	1.67	1.86	2.18	2.60	2.94	3.28	3.54	2.91	3.17	3.72	4.28	4.95	5.44	5.88
	Servo motor	0.83	0.97	1.20	1.49	1.66	1.63	1.82	2.14	2.56	2.90	3.24	3.50	-	-	-	-	-	-	-
Model		LEYG16L					LEYG25L							LEYG32L						
Stroke [mm]		30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight [kg]	Step motor	0.84	0.97	1.14	1.43	1.58	1.68	1.89	2.13	2.56	2.82	3.14	3.38	2.91	3.18	3.57	4.12	4.66	5.17	5.56
	Servo motor	0.84	0.97	1.14	1.43	1.58	1.64	1.85	2.09	2.52	2.78	3.10	3.34	-	-	-	-	-	-	-
Model		LEYG40M							LEYG40L											
Stroke [mm]		30	50	100	150	200	250	300	30	50	100	150	200	250	300					
Product weight [kg]	Step motor	3.21	3.47	4.02	4.58	5.25	5.74	6.18	3.21	3.48	3.87	4.42	4.96	5.47	5.86					
	Servo motor	-	-	-	-	-	-	-	-	-	-	-	-	-	-					

Weight: In-line Motor Type

Model		LEYG16M					LEYG25M							LEYG32M						
Stroke [mm]		30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight [kg]	Step motor	0.83	0.97	1.20	1.49	1.66	1.66	1.85	2.17	2.59	2.93	3.27	3.53	2.90	3.16	3.71	4.27	4.94	5.43	5.87
	Servo motor	0.83	0.97	1.20	1.49	1.66	1.62	1.81	2.13	2.55	2.89	3.23	3.49	-	-	-	-	-	-	-
Model		LEYG16L					LEYG25L							LEYG32L						
Stroke [mm]		30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight [kg]	Step motor	0.84	0.97	1.14	1.43	1.58	1.67	1.88	2.12	2.55	2.81	3.13	3.37	2.90	3.17	3.56	4.11	4.65	5.16	5.55
	Servo motor	0.84	0.97	1.14	1.43	1.58	1.63	1.84	2.08	2.51	2.77	3.09	3.33	-	-	-	-	-	-	-
Model		LEYG40M							LEYG40L											
Stroke [mm]		30	50	100	150	200	250	300	30	50	100	150	200	250	300					
Product weight [kg]	Step motor	3.20	3.46	4.01	4.57	5.24	5.73	6.17	3.20	3.47	3.86	4.41	4.95	5.46	5.85					
	Servo motor	-	-	-	-	-	-	-	-	-	-	-	-	-	-					

Additional Weight

Additional Weight		[kg]		
Size	$\mathbf{1 6}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Lock	0.12	0.26	0.53	0.53
Motor cover	0.02	0.03	0.04	0.05
Lock/Motor cover	0.16	0.32	0.61	0.62

LEYG Series

Step Motor (Servo/24 VDC) Servo Motor (24 VDC)

Construction
Motor top mounting type

Motor top mounting type With lock/motor cover

In-line motor type

In-line motor type With lock/motor cover

Construction

LEYG $\square M$

$\operatorname{LEYG}_{32}^{165}{ }_{40}^{16} \mathrm{M}$: 50 st or less

LEYG ${ }_{32}^{16}{ }^{16} \mathbf{M}$: Over 50st

When grease retaining function selected LEYG ${ }_{32}^{25} \mathrm{M} \square \square \stackrel{\mathrm{C}}{\mathrm{B}}-\square \square \mathrm{F}$: 50st or less

LEYG ${ }_{40}^{25}{ }_{40}^{25} \square \square \square_{\mathrm{C}}^{\mathrm{A}}-\square \square \mathrm{F}$: Over 50st

* Felt material is inserted to retain grease at the sliding part of the sliding bearing. This lengthens the life of the sliding part, but does not guarantee it permanently.

LEYG $\square \mathbf{L}$

LEYG16L: 30st or less
LEYG ${ }_{40}^{25} \mathrm{~L}$: 100st or less

LEYG16L: Over 30st, 100st or less

LEYG ${ }_{32}^{16}{ }_{40}^{16}$ L: Over 100 st

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw shaft	Alloy steel	
$\mathbf{3}$	Ball screw nut	Synthetic resin/Alloy steel	
4	Piston	Aluminum alloy	
5	Piston rod	Stainless steel	Hard chrome plating
6	Rod cover	Aluminum alloy	
7	Bearing holder	Aluminum alloy	
8	Rotation stopper	POM	
9	Socket	Free cutting carbon steel	Nickel plating
10	Connected shaft	Free cutting carbon steel	Nickel plating
11	Bushing	Bearing alloy	
12	Bearing	-	
13	Return box	Aluminum die-cast	Coating
14	Return plate	Aluminum die-cast	Coating
15	Magnet	-	
16	Wear ring holder	Stainless steel	Stroke 101 mm or more
17	Wear ring	POM	Stroke 101 mm or more
18	Screw shaft pulley	Aluminum alloy	
19	Motor pulley	Aluminum alloy	
20	Belt	-	
21	Parallel pin	Stainless steel	
22	Seal	NBR	
23	Retaining ring	Steel for spring	Phosphate coated
24	Motor	-	
25	Motor cover	Synthetic resin	Only "With motor cover"
26	Grommet	Synthetic resin	Only "With motor cover"'
27	Guide attachment	Aluminum alloy	Anodized

No.	Description	Material	Note
$\mathbf{2 8}$	Guide rod	Carbon steel	
$\mathbf{2 9}$	Plate	Aluminum alloy	Anodized
$\mathbf{3 0}$	Plate mounting cap screw	Carbon steel	Nickel plating
$\mathbf{3 1}$	Guide cap screw	Carbon steel	Nickel plating
$\mathbf{3 2}$	Sliding bearing	Bearing alloy	
$\mathbf{3 3}$	Lube-retainer	Felt	
$\mathbf{3 4}$	Holder	Resin	
$\mathbf{3 5}$	Retaining ring	Steel for spring	Phosphate coated
$\mathbf{3 6}$	Ball bushing	-	
$\mathbf{3 7}$	Spacer	Aluminum alloy	Chromated
$\mathbf{3 8}$	Motor block	Aluminum alloy	Anodized
$\mathbf{3 9}$	Motor adapter	Aluminum alloy	Anodized/LEY16, 25 only
$\mathbf{4 0}$	Hub	Aluminum alloy	
$\mathbf{4 1}$	Spider	NBR	
$\mathbf{4 2}$	Motor cover with lock	Aluminum alloy	Only "With lock/motor cover"
$\mathbf{4 3}$	Cover support	Aluminum alloy	Only "With lock/motor cover"

Replacement Parts/Belt Replacement Parts/Grease Pack

No.	Size	Order no.
20	16	LE-D-2-1
	25	LE-D-2-2
	32,40	LE-D-2-3

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
Guide rod	GR-S-020 $(20 \mathrm{~g})$

* Apply grease on the piston rod periodically.
Grease should be applied at 1 million cycles or 200 km, whichever comes first.

LEYG Series

Step Motor (Servol24 VDC)

Dimensions: Motor Top Mounting

*1 Range within which the rod can move when it returns to origin Make sure workpieces mounted on the rod do not interfere with the work pieces and facilities around the rod.
*2 Position after return to origin
*3 [] for when the direction of return to origin has changed
*4 Through holes cannot be used for size $32 / 40$ with strokes of 50 mm or less.

thread depth NB

LEYG $\square \mathrm{L}$ (Ball bushing bearing) [mm]

Size	Stroke range	L	DB
	90st or less	75	
	91st or more, 200st or less	105	
$\mathbf{2 5}$	114st or less	91	
	115st or more, 190st or less	115	
	191st or more, 300st or less	133	
$\mathbf{3 2}$	114st or less	97.5	
	40	115st or more, 190st or less	
	191st or more, 300st or less	134	

LEYG $\square \mathrm{M}$, LEYG \square L Common

Size	Stroke range	A	B	C	DA	EA	EB	EH	EV	FA	FB	FC	G	GA	H	J	K	M	NA	NB	NC
16	39st or less			37	16	35	69	83	41.1	8	10.5	8.5	4.3	31.8	74.3	24.8	23	25.5	M4 00.7	7	5.5
	40st or more, 100st or less	109	90.5	52																	
	101st or more, 200st or less	129	110.5	82																	
25	39st or less			50	20	46	85	103	52.3	11	14.5	12.5	5.4	40.3	98.8	30.8	29	34	M5 x 0.8	8	6.5
	40st or more, 100st or less	141.5	116	67.5																	
	101st or more, 124st or less	166.5	141																		
	125st or more, 200st or less			$\frac{84.5}{102}$																	
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	39st or less	160.5	130	55	25	60	101	123	63.8	12	18.5	16.5	5.4	50.3	125.3	38.3	30	40	M6 $\times 1.0$	10	8.5
	40st or more, 100st or less	190.5		68																	
	101st or more, 124st or less		160																		
	125st or more, 200st or less			85																	
	201st or more, 300st or less			102																	
Size	Stroke range	OA	OB	P	Q	S	T	U	V	Step	Votor	Servo	motor	WA	WB	WC	X	XA	XB	Y	Z
	39st or less	M5 x 0.8	10	65	15	25	79	6.8	28	80.3	61.8	81	62.5				44	3	4	22.5	6.5
16	40st or more, 100st or less													40	26.5	55					
	101st or more, 200st or less													70	41.5	75					
25	39st or less	M6x 1.0	12	80	18	30	95	6.8	42	85.4	63.4	81.6	59.6	35	26		54	4	5	26.5	8.5
	40st or more, 100st or less													50	33.5	70					
	101st or more, 124st or less															95					
	125st or more, 200st or less													70	43.5						
	201st or more, 300st or less													85	51						
32	39st or less	M6 $\times 1.0$	12	95	28	40	117	7.3	56.4	95.4	68.4	-	-	40	28.5	75	64	5	6	34	8.5
	40st or more, 100st or less													50							
	101st or more, 124st or less													50		105					
	125st or more, 200st or less													70	43.5						
	201st or more, 300st or less													85	51						
40	39st or less	M6x 1.0	12	95	28	40	117	7.3	56.4	117.4	90.4	-	-	40	28.5	75	64	5	6	34	8.5
	40st or more, 100st or less													50	33.5						
	101st or more, 124st or less													70		105					
	125st or more, 200st or ess													85	43						

Dimensions: Motor Top Mounting

		$[\mathrm{mm}]$
Size	\mathbf{T}_{2}	\mathbf{X}_{2}
$\mathbf{1 6}$	7.5	83
$\mathbf{2 5}$	7.5	88.5
$\mathbf{3 2}$	7.5	98.5
$\mathbf{4 0}$	7.5	120.5

Motor cover material: Synthetic resin

				$[\mathrm{mm}]$
Size	Step motor		Servo motor	
	\mathbf{W}	\mathbf{X}	\mathbf{W}	\mathbf{X}
$\mathbf{1 6}$	103.3	121.8	104.0	122.5
$\mathbf{2 5}$	103.9	125.9	100.1	122.1
$\mathbf{3 2}$	111.4	138.4	-	-
$\mathbf{4 0}$	133.4	160.4	-	-

Size	$\mathbf{T}_{\mathbf{2}}$	$\mathbf{X m}_{\mathbf{2}}$
$\mathbf{1 6}$	7.5	124.5
$\mathbf{2 5}$	7.5	129
$\mathbf{3 2}$	7.5	141.5
$\mathbf{4 0}$	7.5	163.5

LEYG Series

Step Motor (Servol24 VDC)

Dimensions: In-line Motor

*1 Range within which the rod can move when it returns to origin Make sure workpieces mounted on the rod do not interfere with the workpieces and facilities around the rod.
*2 Position after return to origin
*3 [] for when the direction of return to origin has changed

LEYG \square L (Ball bushing bearing) [mm]

Size	Stroke range	L	DB
	90st or less	75	8
	91st or more, 200st or less	105	
$\mathbf{2 5}$	114st or less	91	10
	115st or more, 190st or less	115	
	191st or more, 300st or less	133	
$\mathbf{3 2}$	114st or less	97.5	13
	115st or more, 190st or less	116.5	
	191st or more, 300st or less	134	

ØXA 99 depth $\mathbf{X A} \quad 4 \times$ OA thread depth $\mathbf{O B}$

LEYG $\square \mathbf{M}$ (Sliding bearing) [mm]

Size	Stroke range	L	DB
16	64st or less	51.5	10
	65st or more, 90st or less	74.5	
	91st or more, 200st or less	105	
25	59st or less	67.5	12
	60st or more, 185st or less	100.5	
	186st or more, 300st or less	138	
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	54st or less	74	16
	55st or more, 180st or less	107	
	181st or more, 300st or less	144	

LEYG \square M, LEYG \square L Common

Dimensions: In-line Motor

Size	Stroke range	A	T2	X2	L	H	CV
16	100st or less	177	7.5	66.5	35	49.8	43
	101st or more, 200st or less	197					
25	100st or less	209.5	7.5	68.5	46	61.3	54.5
	101st or more, 300st or less	234.5					
32	100st or less	232	7.5	73.5	60	75.8	68.5
	101st or more, 300st or less	262					
40	100st or less	254	7.5	95.5	60	75.8	68.5
	101st or more, 300st or less	284					

Size	Stroke range	Step motor	Servo motor	Step motor	Servo motor
		A		VB	
16	100st or less	215.8	216.5	103.3	104
	101st or more, 200st or less	235.8	236.5		
25	100st or less	246.9	243.1	103.9	100.1
	101st or more, 300st or less	271.9	268.1		
32	100st or less	271.9	-	111.4	-
	101st or more, 300st or less	301.9	-		
40	100st or less	293.9	-	133.4	-
	101st or more, 300st or less	323.9	-		

LEYG Series

Step Motor (Servo/24 VDC)

Support Block

-Guide for support block application

When the stroke exceeds 100 mm and the mounting orientation is horizontal, the body will be bent. Mounting the support block is recommended. (Please order it separately from the models shown below.)

Support Block Model

LEYG-S016

Size

$\mathbf{0 1 6}$	For size 16
$\mathbf{0 2 5}$	For size 25
$\mathbf{0 3 2}$	For size 32,40

\triangle Caution

Do not install the body using only a support block.
The support block should be used only for support.

Size	Model	Stroke range	EB	G	GA	OA	OB	ST	WC	X
16	LEYG-S016	100st or less	69	4.3	31.8	M5 x 0.8	10	16	55	44
		101st or more, 200st or less							75	
25	LEYG-S025	100st or less	85	5.4	40.3	M6 x 1.0	12	20	70	54
		101st or more, 300st or less							95	
32	LEYG-S032	100st or less	101	(5.4)	(50.3)	M6 x 1.0	12	22	75	64
40		101st or more, 300st or less							105	

* Two body mounting screws are included with the support block.
* The through holes of the LEYG-S032 cannot be used for the motor top mounting type. Use taps on the bottom.

Electric Actuator/ Guide Rod Type

1 Accuracy		$\begin{aligned} & 2 \text { Size } \\ & \hline 25 \end{aligned}$	(3) Bearing type		4 Motor mounting position	
Nil	Basic type		M	Sliding bearing	Nil	Top mounting
H	High-precision type	32	L	Ball bushing bearing	D	In-line

Motor type*1

Symbol	Type	Output [W]	Actuator size	Compatible driver*3	UL-compliant
S2*1	AC servo motor (Incremental encoder)	100	25	LECSA■-S1	-
S3		200	32	LECSA■-S3	-
S6*1	AC servo motor (Absolute encoder)	100	25	LECSB \square-S5 LECSCD-S5 LECSSD-S5	-
S7		200	32	LECSB \square-S7 LECSCD-S7 LECSSD-S7	-
T6*2, *4	AC servo motor (Absolute encoder)	100	25	LECSB2-T5 LECSC2-T5	-
				LECSS2-T5	- *4
T7*4		200	32	$\begin{aligned} & \hline \text { LECSB2-T7 } \\ & \text { LECSC2-T7 } \end{aligned}$	-
				LECSS2-T7	- * ${ }^{4}$

*1 For motor type S2 and S6, the compatible driver part number suffixes are S1 and S5 respectively.
*2 For motor type T6, the compatible driver part number suffix is T5.
*3 For details on the driver, refer to page 252.
*4 The only compatible drivers complaint with UL standards are the LECSS2-T5 and LECSS2-T7.

8 Motor option

Nil	Without option
B	With lock

11 Cable length ${ }^{* 1}$ [m]	
Nil	Without cable
2	2
5	5
A	10

*1 The length of the motor, encoder, and lock cables are the same.

9 Guide option

Nil	Without option
\mathbf{F}	With grease retaining function

* Only available for size 25 and 32 sliding bearings (Refer to "Construction" on page 138.)
(6) Lead [mm]

Symbol	LEYG25	LEYG32*1
A	12	$16(20)$
B	6	$8(10)$
\mathbf{C}	3	$4(5)$

*1 The values shown in () are the leads for the size 32 top mounting type. (Equivalent leads which include the pulley ratio [1.25:1])

(7) Stroke [mm]

$\mathbf{3 0}$	30
to	to
$\mathbf{3 0 0}$	300

* For details, refer to the applicable stroke table below.
* There is a limit for mounting the size 32 top mounting type and strokes of 50 mm or less. Refer to the dimensions.

10 Cable type ${ }^{* 1 * 2}$

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

*1 The motor and encoder cables are included. (The lock cable is also included when the motor with lock option is selected.)
*2 Standard cable entry direction is

- Top mounting: (A) Axis side
- In-line: (B) Counter axis side
(Refer to page 270 for details.)

Applicable Stroke Table

- Standard								
Model Stroke $[\mathrm{mm}]$	30	50	100	150	200	250	300	Manufacturable stroke range
LEYG25	\bigcirc	15 to 300						
LEYG32	\bigcirc	20 to 300						

[^10]

12 Driver type*1			
	Compatible driver	Power supply voltage [V]	UL-compliant
Nil	Without driver	-	-
A1	LECSA1-S \square	100 to 120	-
A2	LECSA2-S \square	200 to 230	-
B1	LECSB1-S \square	100 to 120	-
B2	LECSB2-S \square	200 to 230	-
	LECSB2-Tロ	200 to 240	-
C1	LECSC1-S \square	100 to 120	-
C2	LECSC2-S \square	200 to 230	-
	LECSC2-T \square		-
S1	LECSS1-S \square	100 to 120	-
S2	LECSS2-S \square	200 to 230	-
	LECSS2-T \square	200 to 240	\bullet

*1 When a driver type is selected, a cable is included. Select cable type and cable length.
Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil : Without cable and driver

(13) Io cable length $[\mathrm{m}]^{* 1}$

Nil	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

*1 When "Without driver" is selected for driver
type, only "Nil: Without cable" can be selected.
Refer to page 271 if I/O cable is required.
(Options are shown on page 271.)

Use of auto switches for the guide rod type LEYG series

Auto switches must be inserted from the front side with the rod (plate) sticking out. Auto switches cannot be fixed with the parts hidden behind the guide attachment (the side of the rod that sticks out).
Please consult with SMC when using auto switches on the side of the rod that sticks out, as it is produced as a special order.

Compatible Driver

Driver type	Pulse input type /Positioning type	Pulse input type	CC-Link direct input type	SSCNET III type	Pulse input type	CC-Link direct input type	
Series	LECSA	LECSB	LECSC	LECSS	LECSB-T	LECSC-T	LECSS-T
Number of point tables	Up to 7	-	Upto 255 (2staions occupied)	-	Up to 255	Upto 255 (2staions occupied)	-
Pulse input	\bigcirc	\bigcirc	-	-	\bigcirc	-	-
Applicable network	-	-	CC-Link	SSCNET III type	-	CC-Link	SSCNET II/H
Control encoder	Incremental 17-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder	Absolute 22-bit encoder	Absolute 18-bit encoder	Absolute 22-bit encoder
Communication function	USB communication	USB communication,	RS422 communication	USB communication	USB communication,	RS422 communication	USB communication
Power supply voltage [V]		$\begin{aligned} & 100 \text { to } 120 \mathrm{~V} \\ & 200 \text { to } \end{aligned}$	$\begin{aligned} & \text { AC (50/60 Hz) } \\ & 230 \text { VAC } \end{aligned}$		$\begin{aligned} & 200 \text { to } 240 \text { VAC } \\ & (50 / 60 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 200 \text { to } 230 \text { VAC } \\ & (50 / 60 \mathrm{~Hz}) \end{aligned}$	$\begin{gathered} 200 \text { to } 240 \text { VAC } \\ (50 / 60 \mathrm{~Hz}) \end{gathered}$
Reference page	Click here						

Specifications

Model			LEYG25 $\square \mathrm{S}_{6}^{2} /$ T6（Top mounting） LEYG25 \square DS $_{6}^{2} /$ T6（In－line）			LEYG32 $\square \mathrm{S}_{7}^{3} / \mathrm{T} 7$（Top mounting）			LEYG32 \square DS ${ }_{7}^{3} / \mathrm{T} 7$（ In－line）		
		Horizontal＊1	18	50	50	30	60	60	30	60	60
	Work load［kg］	Vertical	7	15	29	7	17	35	10	22	44
	Force［ N$]^{* 2}$（Set value： 15 to 30\％）＊11		65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max．speed［mm／s］		900	450	225	1200	600	300	1000	500	250
	Pushing speed［mm／s $\left.{ }^{2}\right]^{* 3}$		35 or less			30 or less			30 or less		
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］		5000			5000					
	Positioning repeatability［mm］	Basic type	± 0.02								
		High precision type	± 0.01								
	Lost motion＊4 ［mm］	Basic type	0.1 or less								
		High precision type	0.05 or less								
	Lead［mm］（including pulley ratio）		12	6	3	20	10	5	16	8	4
	Impact／Vibration resistance［m／s $\left.{ }^{2}\right]^{* 5}$		50／20			50／20					
	Actuation type		Ball screw＋Belt［1：1］／Ball screw			Ball screw＋Belt［1．25：1］			Ball screw		
	Guide type		Sliding bearing（LEYG \square M），Ball bushing bearing（LEYG \square L）								
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40			（ 5 to 40					
	Operating humidity range［\％RH］		90 or less（No condensation）			90 or less（No condensation）					
	Regeneration option		May be required depending on speed and work load．（Refer to page 113．）								
	Motor output／Size		$100 \mathrm{~W} / \square 40$			$200 \mathrm{~W} / \square 60$					
	Motor type		AC servo motor（100／200 VAC）			AC servo motor（100／200 VAC）					
	Encoder＊12		Motor type S2，S3：Incremental 17－bit encoder（Resolution： $131072 \mathrm{p} / \mathrm{rev}$ ） Motor type S6，S7：Absolute 18－bit encoder（Resolution： $262144 \mathrm{p} / \mathrm{rev}$ ） Motor type T6，T7：Absolute 22－bit encoder（Resolution： $4194304 \mathrm{p} / \mathrm{rev}$ ）（For LECSB－T \square, LECSS－T \square ） Motor type T6，T7：Absolute 18－bit encoder（Resolution： $262144 \mathrm{p} / \mathrm{rev}$ ）（For LECSC－T \square ）								
	Power consumption［W］＊	Horizontal	45			65			65		
		Vertical	145			175			175		
	Standby power consumption	Horizontal	2			2			2		
	when operating［W］＊7	Vertical	8			8			8		
	Max．instantaneous power consumption［W］＊8		445			724			724		
			Non－magnetizing lock			Non－magnetizing lock					
			131	255	485	157	308	588	197	385	736
			6.3			7.9					
			24 VDC $_{-10 \%}^{0}$	7.9							

＊1 This is the maximum value of the horizontal work load．An external guide is necessary to support the load．The actual work load changes according to the condition of the external guide．Confirm the load using the actual device．
＊2 The force setting range（set values for the driver）for the force control with the torque control mode．Set it with reference to＂Force Conversion Graph＂on page 114．When the control equivalent to the pushing operation of the LECP6 series controller is performed， select the LECSS，LECSS－T or LECSB2－T driver．
The point table no．input method is used for the LECSB2－T．When selecting the LECSS or LECSS2－T，combine it with a Simple Motion module（manufactured by Mitsubishi Electric Corporation）which has a pushing operation function．
＊3 The allowable collision speed for collision with the workpiece with the torque control mode． ＊4 A reference value for correcting an error in reciprocal operation．
＊5 Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test
was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．
The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊6 The power consumption（including the driver）is for when the actuator is operating．
＊7 The standby power consumption when operating（including the driver）is for when the actuator is stopped in the set position during operation．
＊The maximum instantaneous power consumption（including the driver）is for when the actuator is operating．
＊9 Only when motor option＂With lock＂is selected．
＊10 For an actuator with lock，add the power consumption for the lock．
＊11 For motor types T6 and T7，the set value is 12 to 24% ．
＊12 For motor types T 6 and T 7 ，the resolution will change depending on the driver type．

Weight

Weight：Motor Top Mounting Type

SeriesStroke $[\mathrm{mm}]$		LEYG25MS ${ }_{6}^{2} /$ T6							LEYG32MS ${ }_{7} /$／77						
		30	50	100	150	200	250	300	30	50	100	150	200	250	300
$\begin{array}{\|l\|} \hline \frac{0}{0} \\ 0.0 \\ 0 \\ \\ \hline \end{array}$	Incremental encoder	1.80	1.99	2.31	2.73	3.07	3.41	3.67	3.24	3.50	4.05	4.80	5.35	5.83	6.28
	Absolute encoder［ S_{7}^{6} ］	1.86	2.05	2.37	2.79	3.13	3.47	3.73	3.18	3.44	3.99	4.74	5.29	5.77	6.22
	Absolute encoder［ T_{7}^{6} ］	1.8	2.0	2.4	2.8	3.1	3.5	3.7	3.2	3.4	4.0	4.7	5.3	5.7	6.2
Series		LEYG25LS ${ }_{6}^{2} / \mathrm{T} 6$							LEYG32LS ${ }_{7}^{3 / T 7}$						
	Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
	Incremental encoder	1.81	2.02	2.26	2.69	2.95	3.27	3.51	3.24	3.51	3.9	4.64	5.06	5.56	5.96
	Absolute encoder［ S_{7}^{6} ］	1.87	2.08	2.32	2.75	3.01	3.33	3.57	3.18	3.45	3.84	4.58	5.00	5.50	5.90
	Absolute encoder［ T_{7}^{6} ］	1.9	2.1	2.3	2.7	3.0	3.3	3.6	3.2	3.4	3.8	4.6	5.0	5.5	5.9

Weight：In－line Motor Type

SeriesStroke［mm］		LEYG25MDS ${ }_{6}^{2} /$ T6							LEYG32MDS ${ }_{7}^{3 / T 7}$						
		30	50	100	150	200	250	300	30	50	100	150	200	250	300
$\begin{array}{\|l\|} \hline ⿳ 亠 口 冋 口 \end{array}$	Incremental encoder	1.83	2.02	2.34	2.76	3.10	3.44	3.70	3.26	3.52	4.07	4.82	5.37	5.85	6.30
	Absolute encoder［ S_{7}^{6} ］	1.89	2.08	2.40	2.82	3.16	3.50	3.76	3.20	3.46	4.01	4.76	5.31	5.79	6.24
	Absolute encoder［ T_{7}^{6} ］	1.9	2.1	2.4	2.8	3.1	3.5	3.7	3.2	3.4	4.0	4.7	5.3	5.8	6.2
Series		LEYG25LDS ${ }_{6}^{2} /$ T6							LEYG32LDS ${ }_{7}^{3} / \mathrm{T} 7$						
	Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
	Incremental encoder	1.84	2.05	2.29	2.72	2.98	3.30	3.54	3.26	3.53	3.92	4.66	5.08	5.58	5.98
	Absolute encoder［ S_{7}^{6} ］	1.90	2.11	2.35	2.78	3.04	3.36	3.60	3.20	3.47	3.86	4.60	5.02	5.52	5.92
	Absolute encoder［ T_{7}^{6} ］	1.9	2.1	2.3	2.8	3.0	3.3	3.6	3.2	3.4	3.8	4.6	5.0	5.5	5.9

Size			$\mathbf{2 5}$
$\mathbf{*}$ 2．	$\mathbf{3 2}$		
	Incremental encoder	0.20	0.40
	Absolute encoder $\left[\mathbf{S}_{7}^{6}\right]$	0.30	0.66
	Absolute encoder $\left[\mathbf{T}_{7}^{6}\right]$	0.3	0.7

Electric Actuator/Guide Rod Type LEYG Series
 AC Servo Motor

Construction

Motor mounting position: Top mounting type

LEYG $\square \mathrm{M}$

LEYG $\square \mathbf{L}$

LEYG25/32M: 50st or less

LEYG25/32M: Over 50st

When grease retaining function selected

LEYG25/32L: 100st or less

LEYG25/32L: Over 100st

(41)

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw shaft	Alloy steel	
$\mathbf{3}$	Ball screw nut	Synthetic resin/Alloy steel	
$\mathbf{4}$	Piston	Aluminum alloy	
5	Piston rod	Stainless steel	Hard chrome plating
6	Rod cover	Aluminum alloy	
$\mathbf{7}$	Bearing holder	Aluminum alloy	
$\mathbf{8}$	Rotation stopper	POM	
9	Socket	Free cutting carbon steel	Nickel plating
10	Connected shaft	Free cutting carbon steel	Nickel plating
11	Bushing	Bearing alloy	
12	Bearing	-	
13	Return box	Aluminum die-cast	Coating
14	Return plate	Aluminum die-cast	Coating
15	Magnet	-	
16	Wear ring holder	Stainless steel	Stroke 101 mm or more
17	Wear ring	POM	Stroke 101 mm or more
18	Screw shaft pulley	Aluminum alloy	
19	Motor pulley	Aluminum alloy	
20	Belt	-	
21	Parallel pin	Stainless steel	
22	Seal	NBR	
23	Retaining ring	Steel for spring	Phosphate coated
24	Motor adapter	Aluminum alloy	Coating
25	Motor	-	
26	Motor block	Aluminum alloy	Coating

EYG25/32M: Over 50st

LEYG Series

AC Servo Motor

Dimensions: Motor Top Mounting

LEYG $\square \mathrm{M}$, LEYG $\square \mathrm{L}$ Common

Size	[mm]		A	B	C	DA	EA	A	EB	EH	EV	FA	FB	FC	G	G	GA	H	J	K	M	NA	NB	NC	
25	Up to	39	141.5	116	50	20	46		85	103	52.3	11	14.5	12.5	5.4		40.3	98.8	30.8	29	34	M5 x 0.8	8	6.5	
	40 to	100			67.5																				
	101 to	124	166.5	141																					
	125 to	200			84.5																				
	201 to	300			102																				
32	Up to	39	160.5	130	55	25	60	101		123	63.8	12	18.5	16.5	5.4		50.3	125.3	38.3	30	40	M6 x 1.0	10	8.5	
	40 to	100			68																				
	101 to	124	190.5	160																					
	125 to	200			85																				
	201 to	300			102																				
Size	Stroke [m	range m]	OA	OB	P	Q	S	S	T	U	V	WA	WB	WC	X		XA	XB	Y	Z					
25	Up to	39	M6x 1.0	12	80	18	30		95	6.8	40	35	26	70	54		4	5	26.5	8.5					
	40 to	100							50			335													
	101 to	124											95												
	125 to	200							70			43.5													
	201 to	300							85			51													
32	Up to	39	M6 x 1.0	12	95	28	40				7.3	60	40	28.5	75	64		5	6	34	8.5				
	40 to	100								50			33.5												
	101 to	124							117					105											
	125 to	200								70			43.5												
	201 to	300								85			51												
Size	Incremental encoder							Absolute encoder [S6/S7]								Absolute encoder [T6/T7]									
		hout lo		With lock				Without lock				With lock				Without lock				With lock					
	VA	VB	VC	VA	VB		C			VA	VB	VC	VA	VB		C		VA	VB	VC	VA	VB	VC		
25	120	87	14.1	156.9	123.9		5.8			15.4	82.4	14.1	156.5	123.5		. 8		15.4	82.4	14.1	156	123	15.8		
32	128.2	88.2	17.1	156.8	8 116.8		7.1			16.6	76.6	17.1	156.1	116.1		. 1		16.6	76.6	17.1	153.4	113.4	417.1		

Dimensions: In-line Motor

LEYG $\square \mathbf{M}$ (Sliding bearing)			$[\mathrm{mm}]$
Size	Stroke range $[\mathrm{mm}]$	\mathbf{L}	DB
$\mathbf{2 5}$	Up to 59	67.5	
	60 to 185	100.5	12
	186 to 300	138	
$\mathbf{3 2}$	Up to 59	74	16
	60 to 185	107	
	186 to 300	144	

LEYG \square M, LEYG \square L Common

LEYG Series

AC Servo Motor

Support Block

-Guide for support block application

When the stroke exceeds 100 mm and the mounting orientation is horizontal, the body will be bent. Mounting the support block is recommended. (Please order it separately from the models shown below.)

Support Block Model

LEYG-S025

- Size

025	For size 25
032	For size 32

\triangle Caution

Do not install the body using only a support block.
The support block should be used only for support.

Size	Model	Stroke range	EB	G	GA	OA	OB	ST	WC	X
25	LEYG-S025	100st or less	85	5.4	40.3	M6x 1.0	12	20	70	54
		101st or more, 300st or less							95	
32	LEYG-S032	100st or less	101	(5.4)	(50.3)	M6x 1.0	12	22	75	64
		101st or more, 300st or less							105	

[^11]Model
Selection

Electric Actuator/ Guide Rod Type

LEYG Series LEYG25,32

LECS \square Series $>$ p. 135

How to Order

3 Bearing type	
\mathbf{M}	Sliding bearing
\mathbf{L}	Ball bushing bearing

4 4 Motor mounting position

Nil	Top mounting
D	In-line

5 Motor type

Symbol	Type	Output [W]	Actuator size	Compatible driver
V6*1		AC servo motor	100	25
(Absolute encoder)				

*1 For motor type V6, the compatible driver part number suffix is V 5 .
6 Lead [mm]

Symbol	LEYG25	LEYG32 ${ }^{* 1}$
A	12	$16(20)$
B	6	$8(10)$
C	3	$4(5)$

*1 The values shown in () are the leads for the top mounting type. (Equivalent leads which include the pulley ratio [1.25:1])
(7) Stroke [mm]

$\mathbf{3 0}$	30
to	to
$\mathbf{3 0 0}$	300

* For details, refer to the applicable stroke table below.
* There is a limit for mounting the size 32 top mounting type and strokes of 50 mm or less. Refer to the dimensions.

8 Motor option

Nil	Without option
B	With lock

* When "With lock" is selected for the top mounting type, the motor body will stick out from the end of the body for size 25 with strokes of 30 mm or less. Check for interference with workpieces before selecting a model.
(1) Cable length $[m]^{* 1}$

$\mathbf{N i l}$	Without cable
$\mathbf{3}$	3
$\mathbf{5}$	5
\mathbf{A}	10
\mathbf{C}	20

*1 The length of the motor and encoder cables are the same. (For with lock)

Applicable Stroke Table
$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { Model } & \begin{array}{c}\text { Stroke } \\ \text { [mm] }\end{array} & \mathbf{3 0} & \mathbf{5 0} & \mathbf{1 0 0} & \mathbf{1 5 0} & \mathbf{2 0 0} & \mathbf{2 5 0} & \mathbf{3 0 0}\end{array} \begin{array}{c}\text { Manufacturable } \\ \text { stroke range }\end{array}\right]$

[^12](10) Cable type* ${ }^{*}$

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

*1 The motor and encoder cables are included. The motor cable for lock option is included

> when the motor with lock option is selected.

Guide option

Nil	Without option
F	With grease retaining function

* Only available for the sliding bearing

12 Driver type

	Compatible driver	Power supply voltage [V]
Nil	Without driver	-
M2	LECYM2-V \square	200 to 230
U2	LECYU2-V \square	200 to 230

* When a driver type is selected, a cable is included.
Select the cable type and cable length.
(13) IO cable length $[\mathrm{m}]^{* 1}$

Nil	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

*1 When "Without driver" is selected for driver type, only "Nil: Without cable" can be selected.
Refer to page 284 if I/O cable is required.
(Options are shown on page 284.)

Use of auto switches for the guide rod type LEYG series

- Auto switches must be inserted from the front side with the rod (plate) sticking out.

Auto switches cannot be fixed with the parts hidden behind the guide attachment (the side of the rod that sticks out).

- Please consult with SMC when using auto switches on the side of the rod that sticks out, as it is produced as a special order.

Compatible Driver

Driver type	IIMECHATROLINK-II type	MMECHATROLINK-III type
Series	LECYM	LECYU
Applicable network	MECHATROLINK-II	MECHATROLINK-III
Control encoder	Absolute 20-bit encoder	
Communication device	USB communication, RS-422 communication	
Power supply voltage [V]	200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)	
Reference page	277	

LEYG Series

Specifications

*1 This is the maximum value of the horizontal work load. An external guide is necessary to support the load. The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*2 The force setting range (set values for the driver) for the force control with the torque control mode
Set it with reference to "Force Conversion Graph" on page 119.
*3 The allowable collision speed for collision with the workpiece with the torque control mode
*4 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*5 The work load conditions which require "Regenerative resistor" when operating at the maximum speed (Duty ratio: 100\%)
Order the regenerative resistor separately. For details, refer to "Conditions for Regenerative Resistor (Guide)" on page 118.
*6 The power consumption (including the driver) is for when the actuator is operating.
*7 The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during operation.
*8 The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
*9 Only when motor option "With lock" is selected
*10 For an actuator with lock, add the power consumption for the lock.

Weight

Product Weight: Motor Top Mounting Type

Series	LEYG25MV6							LEYG32MV7						
Stroke [mm]	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Weight [kg]	1.7	1.9	2.2	2.6	3.0	3.3	3.6	3.1	3.4	4.0	4.7	5.3	5.7	6.2
Series	LEYG25LV6							LEYG32LV7						
Stroke [mm]	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Weight [kg]	1.7	1.9	2.2	2.6	2.9	3.2	3.4	3.1	3.4	3.8	4.5	5.0	5.5	5.9

Product Weight: In-line Motor Type

Series	LEYG25MDV6							LEYG32MDV7						
Stroke [mm]	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Weight [kg]	1.7	1.9	2.2	2.6	3.0	3.3	3.6	3.2	3.4	4.0	4.7	5.3	5.8	6.2
Series	LEYG25LDV6							LEYG32LDV7						
Stroke [mm]	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Weight [kg]	1.7	2.0	2.2	2.6	2.9	3.2	3.4	3.2	3.4	3.8	4.6	5.0	5.5	5.9

Additional Weight		$[\mathrm{kg}]$
Size	$\mathbf{2 5}$	$\mathbf{3 2}$
Lock	0.3	0.6

Construction

Motor mounting position: Top mounting type

LEYG■M

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw shaft	Alloy steel	
$\mathbf{3}$	Ball screw nut	-	
4	Piston	Aluminum alloy	
$\mathbf{5}$	Piston rod	Stainless steel	Hard chrome plating
$\mathbf{6}$	Rod cover	Aluminum alloy	
$\mathbf{7}$	Bearing holder	Aluminum alloy	
$\mathbf{8}$	Rotation stopper	POM	
$\mathbf{9}$	Socket	Free cutting carbon steel	Nickel plating
$\mathbf{1 0}$	Connected shaft	Free cutting carbon steel	Nickel plating
$\mathbf{1 1}$	Bushing	Bearing alloy	
$\mathbf{1 2}$	Bearing	-	
$\mathbf{1 3}$	Return box	Aluminum die-cast	Coating
$\mathbf{1 4}$	Return plate	Aluminum die-cast	Coating
15	Magnet	-	
$\mathbf{1 6}$	Wear ring holder	Stainless steel	Stroke 101 mm or more
$\mathbf{1 7}$	Wear ring	POM	Stroke 101 mm or more
$\mathbf{1 8}$	Screw shaft pulley	Aluminum alloy	

Support Block

Size	Order no.
$\mathbf{2 5}$	LEYG-S025
$\mathbf{3 2}$	LEYG-S032

* Two body mounting screws are included with the support block.

LEYG \square L

No.	Description	Material	Note
$\mathbf{1 9}$	Motor pulley	Aluminum alloy	
20	Belt	-	
21	Parallel pin	Stainless steel	
$\mathbf{2 2}$	Seal	NBR	
23	Retaining ring	Steel for spring	Phosphate coated
24	Motor adapter	Aluminum alloy	Coating
25	Motor	-	
26	Motor block	Aluminum alloy	Coating
27	Hub	Aluminum alloy	
28	Spider	Urethane	
29	Guide attachment	Aluminum alloy	Anodized
30	Guide rod	Carbon steel	
31	Plate	Aluminum alloy	Anodized
32	Plate mounting cap screw	Carbon steel	Nickel plating
33	Guide cap screw	Carbon steel	Nickel plating
$\mathbf{3 4}$	Sliding bearing	Bearing alloy	
35	Retaining ring	Steel for spring	Phosphate coated
36	Ball bushing	-	

Replacement Parts/Belt

Size	Order no.
$\mathbf{2 5}$	LE-D-2-2
$\mathbf{3 2}$	LE-D-2-4

LEYG Series

LEYG \square M, LEYG \square L Common

Size	Stroke range [mm]		A	B	C		A	EA	EB	EH	EV	FA	FB	FC	G	GA	H	J	K	M	NA	NB	NC	
25	15 to	35	141.5	116	50	20		46	85	103	52.3	11	14.5	12.5	5.4	40.3	98.8	30.8	29	34	M5 x 0.8	8	6.5	
	40 to	100			67.5																			
	105 to	120	166.5	141																				
	125 to	200			84.5																			
	205 to	300			102																			
32	20 to	35	160.5	130	55	25		60	101	123	63.8	12	18.5	16.5	5.4	50.3	125.3	38.3	30	40	M6x 1.0	10	8.5	
	40 to	100			68																			
	105 to	120	190.5	160	68																			
	125 to	200			85																			
	205 to	300			102																			
Size	Stroke [mm	$\begin{aligned} & \text { range } \\ & \mathrm{n}] \end{aligned}$	OA	OB	P		Q	S	T	U	V	WA	WB	WC	X	XA	XB	Y	Z					
25	15 to	35	M6 $\times 1.0$	12	80	18		30	95	6.8	40	35	26	70	54	4	5	26.5	8.5					
	40 to	100						50				33.5	70											
	105 to	120											95											
	125 to	200						70				43.5												
	205 to	300						85				51												
32	20 to	35	M6x 1.0	12	95	28			40	117	7.3	60	40	28.5	75	64	5	6	34	8.5				
	40 to	100						50					33.5											
	105 to	120						105																
	125 to	200						70					43.5											
	205 to	300						85					51											
Size	Without lock			With lock																				
	VA	VB	VC	VA	VB		VC																	
25	115.5	82.5	11	160.5		7.5																		
32	120	80	14	160	12																			
147												SM												

Dimensions: In-line Motor

LEYG \square M, LEYG \square L Common

Size	Stroke range [mm]	B	C	DA	EB	EH	EV	FA	FB	FC	G	GA	H	J	K	NA	NC
25	15 to 35	136.5	50	20	85	103	52.3	11	14.5	12.5	5.4	40.3	53.3	30.8	29	M5 $\times 0.8$	6.5
	40 to 100		67.5														
	105 to 120	161.5															
	125 to 200		84.5														
	205 to 300		102														
32	20 to 35	156	55	25	101	123	63.8	12	18.5	16.5	5.4	50.3	68.3	38.3	30	M6 x 1.0	8.5
	40 to 100		68														
	105 to 120	186	85														
	205 to 300		102														
Size	Stroke range [mm]	OA	OB	P	Q	S	T	\mathbf{U}	V	WA	WB	WC	X	XA	XB	YD	Z
25	15 to 35	$\begin{gathered} \text { M6 x } \\ 1.0 \end{gathered}$	12	80	18	30	95	6.8	40	35	26	70	54	4	5	47	8.5
	40 to 100									50	33.5						
	105 to 120											95					
	125 to 200									70	43.5						
	205 to 300									85	51						
32	20 to 35	$\begin{gathered} \text { M6 x } \\ 1.0 \end{gathered}$	12	95	28	40	117	7.3	60	40	28.5	75	64	5	6	60	8.5
	40 to 100									50	33.5						
	105 to 120									50		105					
	125 to 200									70	43.5						
	205 to 300									85	51						
Size	Stroke range	Without lock			With lock												
	[mm]	A	VB	VC			VB	VC									
25	15 to 100	255.5	82.5	11.5			127.5	11.5									
25	105 to 300	280.5															
32	15 to 100	266.5	80	14			120	14									
	105 to 300	296.5															

LEYG Series

Support Block

-Guide for support block application

When the stroke exceeds 100 mm and the mounting orientation is horizontal, the body will be bent. Mounting the support block is recommended. (Please order it separately from the models shown below.)

Support Block Model

LEYG-S025

- Size

025	For size 25
$\mathbf{0 3 2}$	For size 32

\triangle Caution

Do not install the body using only a support block.
The support block should be used only for support.

Size	Model	Stroke range	EB	G	GA	OA	OB	ST	WC	X
25	LEYG-S025	15 to 100	85	5.4	40.3	M6 x 1.0	12	20	70	54
		105 to 300							95	
32	LEYG-S032	20 to 100	101	5.4	50.3	M6 x 1.0	12	22	75	64
		105 to 300							105	

[^13]
Environment

Dustright/Water-jet-proof (IP65 Equivalent)

Enclosure: IP65 equivalent* ${ }^{* 1}$

- Max. stroke: 500 mm*2
*2 For size 32

*1 IP65 enclosure: The protection structure against solid foreign objects is dust-tight type and the protection structure against water is water-jet-proof type.
Dust-tight means that no dust can enter the inside of the equipment.
Water-jet-proof means that the product is not adversely affected by direct water jets from any direction. That is, even when direct water jets are applied to the product for 3 minutes by means of the pre-determined method, there is no water entry that hinders the correct operation inside the equipment. Be sure to take appropriate protective measures if the product is to be used in an environment where it will be constantly exposed to water or fluids other than water splash. In particular, the product cannot be used in environments where oils, such as cutting oil or cutting fluid, are present.

LEY-X5 (Made to Order)

Size 25, 32

AC Servo Motor (100/200 W) Type

p. 163, 169

Secondary Battery Compatible

Copper (Cu) and zinc (Zn) free* ${ }^{* 1}$
*1 Excludes motors, cables, controllers/drivers

Rod Type/25A-LEY

[^14]
Electric Actuator/Rod Type

LEY-X5 Series Dustight/Water-jet-proof (IP65 Equivalent)
Model Selection

LEY-X5 Series $>p .155$

Speed-Work Load Graph (Guide) for Step Motor (Servo/24 VDC) LECP6, LECP1, LECPMJ, JXC $\square 1$

Horizontal

LEY25 \square-X5
$\square \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY32 $\square-X 5$
7 \backslash for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

Vertical
LEY25 \square-X5

LEY32 \square-X5

Graph of Allowable Lateral Load on the Rod End (Guide)

[Stroke] = [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

Rod Displacement: δ [mm]

	30	50	100	150	200	250	300	350	400	450	500	$\stackrel{\odot}{+}$	
25	± 0.3	± 0.4	± 0.7	± 0.7	± 0.9	± 1.1	± 1.3	± 1.5	± 1.7	-	-		----
32	± 0.3	± 0.4	± 0.7	± 0.6	± 0.8	± 1.0	± 1.1	± 1.3	± 1.5	± 1.7	± 1.8	i	

Model Selection LEY-X5 Series

Refer to page 107 for the LECP6, LECP1, LECPMJ, JXC $\square 1$ and page 109 for the LECA6.
Speed-Work Load Graph (Guide)
For Step Motor (Servo/24 VDC) LECPA, JXC \square_{3}^{2}

Vertical

LEY25 \square-X5

LEY32 \square-X5

For Servo Motor (24 VDC) LECA6

Horizontal
LEY25 \square A-X5

Vertical
LEY25 \square A-X5

LEY-X5 Series

Force Conversion Graph

Step Motor (Servo/24 VDC)

LEY25 $\square-X 5$

Ambient temperature	Set value of pushing force*1 [\%]	Duty ratio [\%]	Continuous pushing time [minute]
$\mathbf{4 0} \mathbf{C}$ or less	65 or less	100	-

LEY32 $\square-X 5$

Ambient temperature	Set value of pushing force*1 [\%]	Duty ratio [\%]	Continuous pushing time [minute]
$\mathbf{2 5}{ }^{\circ} \mathbf{C}$ or less	85 or less	100	-
$\mathbf{4 0 ^ { \circ }} \mathbf{C}$	65 or less	100	-
	85	50	15

Non-rotating Accuracy of Rod

Size	Non-rotating accuracy θ
$\mathbf{2 5}$	$\pm 0.8^{\circ}$
$\mathbf{3 2}$	$\pm 0.7^{\circ}$

* Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod.
This may cause the deformation of the non-rotating guide, abnormal auto switch responses, play in the internal guide, or an increase in the sliding resistance.

Servo Motor (24 VDC)

LEY25 $\square A-X 5$

Ambient temperature	Set value of pushing force*1 [\%]	Duty ratio [\%]	Continuous pushing time [minute]
$\mathbf{4 0} \mathbf{C}$ or less	95 or less	100	-

<Limit Values for Pushing Force and Trigger Level in Relation to Pushing Speed>
Without Load

Model	Lead	Pushing speed [mms]	Pusting focre (Seting innut vave)	Model	Lead	Pushing speed [mms]	Pusting focre (Seting innut vaue)
LEY25	A/B/C	21 to 35	50 to 65%	LEY25■A	A/B/C	21 to 35	80 to 95%
LEY32	A	24 to 30	60 to 85%				
	B/C	21 to 30					

There is a limit to the pushing force in relation to the pushing speed. If the product is operated outside of the range (low pushing force), the completion signal [INP] may be output before the pushing operation has been completed (during the moving operation).
If operating with the pushing speed below the min. speed, please check for operating problems before using the product.
<Set Values for Vertical Upward Transfer Pushing Operations>
For vertical loads (upward), set the pushing force to the max. value shown below and operate at the work load or less.

Model	LEY25 \square			LEY32 \square			LEY25 \square A					
Lead	A	B	C	A	B	C	A	B	C			
Work load $[\mathrm{kg}]$	2.5	5	10	4.5	9	18	1.2	2.5	5			
Pushing force	65%				85%				95%			

*1 Set values for the controller

Electric Actuator/

Refer to page 151 for model selection.

How to Order

(3) Motor type

Symbol	Type	Size		Compatible controller/driver	
		25	32		
Nil	Step motor (Servo/24 VDC)	\bigcirc	\bigcirc	LECP6 LECP1 LECPA LECPMJ	JXCE1 JXC91 JXCP1 JXCD1 JXCL1
A	Servo motor (24 VDC)	\bigcirc	-	LECA6	

Lead [mm]

Symbol	LEY25	LEY32
\mathbf{A}	12	16
\mathbf{B}	6	8
\mathbf{C}	3	4

Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

(5) Stroke [mm]

$\mathbf{3 0}$	30
to	to
$\mathbf{5 0 0}$	500

* For details, refer to the applicable stroke table below.

8 Mounting*3

Symbol	Type	Motor mounting position		
		Top mounting	In-line	
Nil	Ends tapped/Body bottom tapped*4	\bullet	\bullet	
\mathbf{L}	Foot	\bullet	-	
F	Rod flange*4	$\boldsymbol{\bullet}^{* 5}$	\bullet	
\mathbf{G}	Head flange $^{* 4}$	$\boldsymbol{\bullet}^{* 6}$	-	

6 Motor option*2

Nil	Without option
\mathbf{B}	With lock
	Motor

(9) Actuator cable type/length Robotic cable

R1	1.5	RA	$10^{* 7}$
R3	3	RB	$15^{* 7}$
R5	5	RC	$20^{* 7}$
R8	$8^{* 7}$		

Applicable Stroke Table*1

- Standard

Model	Stroke imm	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{3 5 0}$	$\mathbf{4 0 0}$	$\mathbf{4 5 0}$	$\mathbf{5 0 0}$
Manufacturable stroke range												
LEY25	\bullet	-	-	15 to 400								
LEY32	\bullet	20 to 500										

* For auto switches, refer to page 174.
* "-X5" is not added to an actuator model with a controller/driver part number suffix. Example) "LEY25DB-100" for the LEY25DB-100BMU-R16N1D-X5
011 I/O cable length ${ }^{* 12}$, Communication plug

$\mathbf{N i l}$	Without cable
$\mathbf{1}$	1.5 m
$\mathbf{3}$	$3 \mathrm{~m}^{* 13}$
$\mathbf{5}$	$5 \mathrm{~m}^{* 13}$
\mathbf{S}	Straight type communication plug connector*14
\mathbf{T}	T-branch type communication plug connector*14

12 Controller/Driver mounting

(10) Controller

Communication

 protocol| \mathbf{E} | EtherCAT $^{\circledR}$ |
| :---: | :---: |
| $\mathbf{9}$ | EtherNet/IP $^{\text {TM }}$ |
| \mathbf{P} | PROFINET $^{\text {PROF }}$ |
| \mathbf{D} | DeviceNet $^{\text {TM }}$ |
| \mathbf{L} | IO-Link |

- Communication plug connector for DeviceNet ${ }^{\text {TM }} * 16$

- Mounting

$\mathbf{7}$	Screw mounting
$\mathbf{8}^{* 15}$	DIN rail

Nil	Without plug connector
\mathbf{S}	Straight type
\mathbf{T}	T-branch type

- For single axis
*1 Please consult with SMC for non-standard strokes as they are produced as special orders.
*2 When "With lock" is selected for the top mounting type, the motor body will stick out from the end of the body for strokes of 50 mm or less. Check for interference with workpieces before selecting a model.
$* 3$ The mounting bracket is shipped together with the product but does not come assembled.
*4 For the horizontal cantilever mounting of the rod flange, head flange, or ends tapped types, use the actuator within the following stroke range. -LEY25: 200 mm or less -LEY32: 100 mm or less
*5 The rod flange type is not available for the LEY25/32 with strokes of 50 mm or less and motor option "With lock."
*6 The head flange type is not available for the LEY32.
*7 Produced upon receipt of order (Robotic cable only)
*8 For details on controllers/drivers and compatible motors, refer to the compatible controller/driver on the next page.

\triangle Caution

[CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEY series and the controller LEC/JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
(2) For the servo motor (24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 197 for the noise filter set. Refer to the LECA series Operation Manual for installation.
(3) CC-Link direct input type (LECPMJ) is not CE-compliant.
*9 Only available for the motor type "Step motor"
*10 Not compliant with CE
*11 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- \square) on page 218 separately.
*12 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 197 (For LECP6/ LECA6), page 211 (For LECP1), or page 218 (For LECPA) if I/O cable is required.
*13 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector
*14 For the LECPMJ, only "Nil," "S," and "T" are selectable since I/O cable is not included.
*15 The DIN rail is not included. Order it separately.
*16 Select "Nil" for anything other than DeviceNet ${ }^{\text {TM }}$.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and actuator is correct.
<Check the following before use.>
(1) Check the actuator label for the model number. This number should match that of the controller/driver.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

* Refer to the Operation Manual for using the products. Please download it via our website, https://www.smcworld.com

LEY-X5 Series

Step Motor (Servo/24 VDC)

Compatible Controller/Driver

LEC \square Series

Type	Step data input type	Step data input type	CC-Link direct input type	Programless type	Pulse input type
Series	LECP6	LECA6	LECPMJ	LECP1	LECPA
Features	Value (Step data) input Standard controller		CC-Link direct input	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Servo motor (24 VDC)	Step motor (Servo/24 VDC)		
Max. number of step data	64 points			14 points	-
Power supply voltage	24 VDC				
Reference page	189	189	222	205	212

JXC \square Series

Type	EtherCAT ${ }^{\circledR}$ direct input type	EtherNet/IPTM direct input type	PROFINET direct input type	DeviceNet ${ }^{\text {TM }}$ direct input type	IO-Link direct input type
Series	JXCE1	JXC91	JXCP1	JXCD1	JXCL1
Features	EtherCAT® ${ }^{\circledR}$ direct input	EtherNet/IPTM direct input	PROFINET direct input	DeviceNet ${ }^{\text {TM }}$ direct input	IO-Link direct input
Compatible motor	Step motor (Servo/24 VDC)				
Max. number of step data	64 points				
Power supply voltage	24 VDC				
Reference page	230				

Specifications

Step Motor (Servo/24 VDC)

Model					LEY25■-X5			LEY32■-X5		
	Work load [kg]*1			(3000 [mm/s $\left.{ }^{2}\right]$)	20	40	60	30	45	60
				(2000 [mm/s²])	30	60	70	40	60	80
				(3000 [mm/s²])	12	30	30	20	40	40
				(2000 [mm/s²])	18	50	50	30	60	60
			ertica**14	(3000 [mm/s $\left.{ }^{2}\right]$)	7	15	29	10	21	42
	Pushing force [N$]^{* 2 * 3 * 4}$				63 to 122	126 to 238	232 to 452	80 to 189	156 to 370	296 to 707
	Speed [mm/s] ${ }^{* 4}$				18 to 400	9 to 200	5 to 100	24 to 400	12 to 200	6 to 100
	Max. acceleration/deceleration [mm/s ${ }^{2}$]				3000					
	Pushing speed [mm/s]*5				35 or less			30 or less		
	Positioning repeatability [mm]				± 0.02					
	Lost motion [mm]*6				0.1 or less					
	Screw lead [mm]				12	6	3	16	8	4
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 7}$				50/20					
	Actuation type				Ball screw + Belt (LEY \square) Ball screw (LEY $\square D)$					
	Guide type				Sliding bushing (Piston rod)					
	Enclosure*8				IP65 equivalent					
	Operating	mpe	erature ran	ge [${ }^{\circ} \mathrm{C}$]	5 to 40					
	Operating humidity range [\%RH]				90 or less (No condensation)					
	Motor size				$\square 42$			$\square 56.4$		
	Motor type				Step motor (Servo/24 VDC)					
	Encoder				Incremental A/B phase (800 pulse/rotation)					
	Rated voltage [V]				24 VDC $\pm 10 \%$					
	Power consumption [W]*9				40			50		
	Standby power consumption when operating [W]*10				15			48		
	Max. instantaneous power consumption [W]**1				48			104		
	Type*12				Non-magnetizing lock					
	Holding force [N$]$				78	157	294	108	216	421
	Power consumption [W]**3				5			5		
	Rated voltage [V]				$24 \mathrm{VDC} \pm 10 \%$					

*1 Horizontal: The maximum value of the work load. An external guide is necessary to support the load. (Friction coefficient of guide: 0.1 or less) The actual work load and transfer speed change according to the condition of the external guide. Also, speed changes according to the work load. Check "Model Selection" on pages 151 and 152.
Vertical: Speed changes according to the work load. Check "Model Selection" on pages 151 and 152.
The values shown in () are the acceleration/deceleration. Set these values to be $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ or less.
*2 Pushing force accuracy is $\pm 20 \%$ (F.S.).
*3 The thrust setting values for LEY25 \square is 38% to 65% and for LEY32 \square is 38% to 85%. The pushing force values change according to the duty ratio and pushing speed. Check "Model Selection" on page 153.
*4 The speed and force may change depending on the cable length, load, and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
*5 The allowable speed for pushing operation. When push conveying a workpiece, operate at the vertical work load or less.
*6 A reference value for correcting an error in reciprocal operation
*7 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*8 Cannot be used in an environment where oil such as cutting oil splashes or it is constantly exposed to water
Take appropriate protective measures. For details on enclosure, refer to "Enclosure" on page 186.
$* 9$ The power consumption (including the controller) is for when the actuator is operating.
*10 The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation. Except during the pushing operation
*11 The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
*12 With lock only
*13 For an actuator with lock, add the power consumption for the lock.
*14 When mounting vertically and using the product facing upwards in an environment where water is present, take necessary measures to prevent water from splashing on the rod cover, because water will accumulate on the rod seal due to the structure of the product.

Specifications

Servo Motor（24 VDC）

Model				LEY25 \square A－X5		
	Work load ［kg］${ }^{* 1}$	Horizontal	（ 3000 ［ $\mathrm{mm} / \mathrm{s}^{2} \mathrm{]}$ ）	7	15	30
		Vertical＊13	（3000［mm／s $\left.{ }^{2}\right]$ ）	2	5	11
	Pushing force［ N$]^{* 2 * 3}$			18 to 35	37 to 72	66 to 130
	Speed［mm／s］			2 to 400	1 to 200	1 to 100
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］			3000		
	Pushing speed［mm／s］＊4			35 or less		
	Positioning repeatability［mm］			± 0.02		
	Lost motion［mm］＊5			0.1 or less		
	Screw lead［mm］			12	6	3
	Impact／Vibration resistance［m／s $\left.{ }^{2}\right]^{* 6}$			50／20		
	Actuation type			$\text { Ball screw + Belt (LEY } \square \text {) }$ Ball screw（LEY $\square \mathrm{D})$		
	Guide type			Sliding bushing（Piston rod）		
	Enclosure＊7			IP65 equivalent		
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］			5 to 40		
	Operating humidity range［\％RH］			90 or less（No condensation）		
	Motor size			$\square 42$		
$\frac{0}{0}$	Motor type			Servo motor（24 VDC）		
兑	Encoder			Incremental A／B phase（800 pulse／rotation）／Z－phase		
芯	Rated voltage［V］			24 VDC $\pm 10 \%$		
$\begin{gathered} \text { ö } \\ \vdots \end{gathered}$	Power consumption［W］＊8			86		
志	Standby power consumption when operating［W］${ }^{* 9}$			4 （Horizontal）／12（Vertical）		
$\frac{\boldsymbol{0}}{\boldsymbol{\omega}}$	Max．instantaneous power consumption［W］＊10			96		
	Type＊11			Non－magnetizing lock		
	Holding force［ N ］			78	157	294
	Power consumption［W］＊12			5		
	Rated voltage［V］			24 VDC $\pm 10 \%$		

＊1 Horizontal：The maximum value of the work load． An external guide is necessary to support the load． （Friction coefficient of guide： 0.1 or less）The actual work load and transfer speed change according to the condition of the external guide． Vertical：Speed changes according to the work load．Check＂Model Selection＂on page 152．The values shown in（ ）are the acceleration／ deceleration．
Set these values to be $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ or less．
＊2 Pushing force accuracy is $\pm 20 \%$（F．S．）．
＊3 The thrust setting values for LEY25A \square is 75% to 95% ．The pushing force values change according to the duty ratio and pushing speed．Check＂Model Selection＂on page 153.
＊4 The allowable speed for pushing operation When push conveying a workpiece，operate at the vertical work load or less．
＊5 A reference value for correcting an error in reciprocal operation
＊6 Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊7 Cannot be used in an environment where oil such as cutting oil splashes or it is constantly exposed to water
Take appropriate protective measures．For details on enclosure，refer to＂Enclosure＂on page 186.
＊8 The power consumption（including the controller） is for when the actuator is operating．
＊9 The standby power consumption when operating （including the controller）is for when the actuator is stopped in the set position during the operation with the maximum work load．Except during the pushing operation
＊10 The maximum instantaneous power consumption （including the controller）is for when the actuator is operating．This value can be used for the selection of the power supply．
＊11 With lock only
＊12 For an actuator with lock，add the power consumption for the lock．
＊13 When mounting vertically and using the product facing upwards in an environment where water is present，take necessary measures to prevent water from splashing on the rod cover，because water will accumulate on the rod seal due to the structure of the product．

Weight

Weight：Motor Top Mounting Type

	Model	LEY25－X5									LEY32－X5										
Stroke［mm］		30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product	Step motor	1.45	1.52	1.69	1.95	2.13	2.30	2.48	2.65	2.83	2.48	2.59	2.88	3.35	3.64	3.91	4.21	4.49	4.76	5.04	5.32
weight［kg］	Servo motor	1.41	1.48	1.65	1.91	2.09	2.26	2.44	2.61	2.79	－	－	－	－	－	－	－	－	－	－	－

Weight：In－line Motor Type

	Model	LEY25D－X5									LEY32D－X5										
Stroke［mm］		30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product	Step motor	1.46	1.53	1.70	1.96	2.14	2.31	2.49	2.66	2.84	2.49	2.60	2.89	3.36	3.65	3.92	4.22	4.50	4.77	5.05	5.33
weight［kg］	Servo motor	1.42	1.49	1.66	1.92	2.10	2.27	2.45	2.62	2.80	－	－	－	－	－	－	－	－	－	－	－

Additional Weight

	$[\mathrm{kg}]$	
	$\mathbf{2 5}$	$\mathbf{3 2}$
	0.33	0.63
	0.03	0.03
	0.02	0.02
	0.08	0.14
	0.17	0.20

Construction

Motor top mounting type: LEY_{32}^{25}

In-line motor type: LEY ${ }_{32}^{25} \mathrm{D}$

Component Parts

No.	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Ball screw shaft	Alloy steel	
3	Ball screw nut	Synthetic resin/Alloy steel	
4	Piston	Aluminum alloy	
5	Piston rod	Stainless steel	Hard chrome plating
6	Rod cover	Aluminum alloy	
7	Bearing holder	Aluminum alloy	
8	Rotation stopper	POM	
9	Socket	Free cutting carbon steel	Nickel plating
10	Connected shaft	Free cutting carbon steel	Nickel plating
11	Bushing	Bearing alloy	
12	Bearing	-	
13	Return box	Aluminum die-cast	Coating
14	Return plate	Aluminum die-cast	Coating
15	Magnet	-	
16	Wear ring holder	Stainless steel	Stroke 101 mm or more
17	Wear ring	POM	Stroke 101 mm or more
18	Screw shaft pulley	Aluminum alloy	
19	Motor pulley	Aluminum alloy	

No.	Description	Material	Note
$\mathbf{2 0}$	Belt	-	
$\mathbf{2 1}$	Parallel pin	Stainless steel	
$\mathbf{2 2}$	Scraper	Nylon	
$\mathbf{2 3}$	Retaining ring	Steel for spring	Phosphate coated
$\mathbf{2 4}$	Motor	-	
$\mathbf{2 5}$	Lube-retainer	Felt	
$\mathbf{2 6}$	O-ring	NBR	
$\mathbf{2 7}$	Gasket	NBR	
$\mathbf{2 8}$	Motor adapter	Aluminum alloy	Anodized
$\mathbf{2 9}$	Motor cover	Aluminum alloy	Anodized
$\mathbf{3 0}$	Seal connector	-	
$\mathbf{3 1}$	End cover	Aluminum alloy	Anodized
$\mathbf{3 2}$	Hub	Aluminum alloy	
$\mathbf{3 3}$	Spider	NBR	
$\mathbf{3 4}$	Motor block	Aluminum alloy	Anodized
$\mathbf{3 5}$	Motor adapter	Aluminum alloy	LEY25 only
$\mathbf{3 6}$	Socket (Male thread)	Free cutting carbon steel	Nickel plating
$\mathbf{3 7}$	Nut	Alloy steel	Zinc chromated

Replacement Parts (Motor top mounting only)/Belt		
No.	Size	Order no.
$\mathbf{2 0}$	$\mathbf{2 5}$	LE-D-2-2
	$\mathbf{3 2}$	LE-D-2-3

Replacement Parts/Grease Pack

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

[^15]
LEY-X5 Series

Step Motor (Servo/24 VDC)

Dimensions

Motor top mounting type

Size	Stroke range [mm]	A	B		D	EH	EV	FH	FV	GH	GV	H	J	K	L	M	O1	
25	15 to 100	130.5	116	1	20	44	45.5	57.6	56.8	66.2	139.5	M8 x 1.25	24	17	14.5	34	M5 x 0.8	
	101 to 400	155.5	14															
32	20 to 100	148.5	13	1	25	51	56.5	69.6	78.6	76.2	173.5	M8 x 1.25	31	22	18.5	40	M6 x 1.0	
	101 to 500	178.5	16															
Size	Stroke range [mm]	R	OA	OB	PA	PB	Q	S	T	U	PC	W		X			Y	
												Without lock	With lock	Without lock		lock		
25	15 to 100	8	37	38	15.4	8.2	28	46	92	1	15.4	123	173	145	195		51	
	101 to 400																	
32	20 to 100	10	37	38	15.4	8.2	28	60	118	1	15.9	123	173	150	200		61	
	101 to 500																	

Size	Stroke range [mm]	A	B		D	EH	EV	FH	FV	GH	GV	H	J	K	L	M	O1	
25	15 to 100	130.5	116	13	20	44	45.5	57.6	56.8	66.2	139.5	M8 x 1.25	24	17	14.5	34	M5 x 0.8	
	101 to 400	155.5	141															
32	20 to 100	148.5	130		25	51	56.5	69.6	78.6	76.2	173.5	M8 x 1.25	31	22	18.5	40	M6 x 1.0	
	101 to 500	178.5	160															
Size	Stroke range [mm]	R	OA	OB	PA	PB	Q	S	T	U	PC	W		X			Y	
												Without lock	With lock	Without lock		lock		
25	15 to 100	8	37	38	15.4	8.2	28	46	92	1	15.4	123	173	145	195		51	
	101 to 400																	
32	20 to 100	10	37	38	15.4	8.2	28	60	118	1	15.9	123	173	150	200		61	
	101 to 500																	

Body Bottom Tapped

Body Bottom Tapped [mm]											
Size	Stroke range [mm]	MA	MB	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	46	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100			42	41		50				
	101 to 124						75				
	125 to 200			59	49.5						
	201 to 400			76	58						
32	20 to 39	25	55	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100			36	43		50				
	101 to 124						80				
	125 to 200			53	51.5						
	201 to 500			70	60						

[^16]
Dimensions

In-line motor type

Size	Stroke range [mm]	A		B	C	D	EH	EV	FH	FV	G	H	J	K	L
		Without lock	With lock												
25	15 to 100	250	300	89.5	13	20	44	45.5	57.6	57.7	94.7	M8 x 1.25	24	17	14.5
	101 to 400	275	325	114.5											
32	20 to 100	265.5	315.5	96	13	25	51	56.5	69.6	79.6	116.6	M8 $\times 1.25$	31	22	18.5
	101 to 500	295.5	345.5	126											

Size	Stroke range [mm]	M	O1	R	OA	OB	PA	PB	Q	U	PC	W		Y
												Without lock	With lock	
25	15 to 100	34	M5 x 0.8	8	37	38	15.4	8.2	28	0.9	15.9	146	196	24.5
	101 to 400													
32	20 to 100	40	M6 x 1.0	10	37	38	15.4	8.2	28	1	15.9	151	201	27
	101 to 500													

Body Bottom Tapped
[mm]

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100		42	41						
	101 to 124					75				
	125 to 200		59	49.5						
	201 to 400		76	58						
32	20 to 39	25	22	36	30	50	M6x 1	8.5	5	6
	40 to 100		36	43		50				
	101 to 124					80				
	125 to 200		53	51.5						
	201 to 500		70	60						

[^17]
Electric Actuator/
 LEY-X5 (Made to Order) Series Lev25, 32

RoHS

How to Order

	EY H	S2	$3-100$		2	X5	
(1) Accuracy			5 (5 Motor type		11	$(13$	Made to order: Dust-tight/ Water-jet-proof
$\begin{aligned} & \hline \mathrm{NiI} \\ & \mathrm{H} \\ & \hline \end{aligned}$	High-precision ty	25 32	Symbol	Type	$\begin{gathered} \text { Output } \\ {[\mathrm{W}]} \end{gathered}$	$\begin{aligned} & \text { Actuator } \\ & \text { size } \end{aligned}$	Compatible driver
(3) Motor mounting positio			S2*1	AC servo motor(Incremental encoder)	100	25	LECSA■-S1
			S3		200	32	LECSA■-S3
Nil \mathbf{D}	\|op mounting		S6*1	AC servo motor (Absolute encoder)	100	25	LECSB■-S5 LECSCD-S5 LECSS■-S5
(5) Lead [mm]			S7		200	32	LECSB■-S7 LECSCD-S7
Symbol	LEY25 \square	LEY32 ${ }^{\text {* }}$			200	32	LECSS[-S7
A	12	16 (20)	T6*2	AC servo motor (Absolute encoder)			LECSB2-T5
B	6	8 (10)			100	25	LECSC2-T5
C	3	4 (5)					LECSS2-T5
*1 The values shown in () are the equivalent leads which include the pulley ratio for the size 32 top mounting type.			T7		200	32	LECSB2-T7 LECSC2-T7 LECSS2-T7

* For details, refer to the applicable stroke table below.
7 Motor option

Nil	Without option
B	With lock ${ }^{* 1}$

*1 When "With lock" is selected for the top mounting type, the motor body will stick out from the end of the body for size 25 with strokes of 30 mm or less. Check for interference with workpieces before selecting a model.

8
Rod end thread
Nil

il	Rod end female thread
\mathbf{M}	Rod end male thread
(1 rod end nut is included.)	

11 Cable length [m]*1

Nil	Without cable
$\mathbf{2}$	2
$\mathbf{5}$	5
\mathbf{A}	10

*1 The length of the encoder, motor, and lock cables are the same
*1 For motor type S2 and S6, the compatible driver part number suffixes are S1 and S5 respectively. *2 For motor type T6, the compatible driver part number suffix is T5.

9 Mounting*1

Symbol	Type	Motor mounting position	
		In-line	
$\mathbf{N i l}$	Ends tapped/ Body bottom tapped	\bullet	\bullet
\mathbf{L}	Foot		

*1 The mounting bracket is shipped together with the product but does not come assembled.
*2 For the horizontal cantilever mounting of the rod flange, head flange, or ends tapped types, use the actuator within the following stroke range.
-LEY25: 200 mm or less
-LEY32: 100 mm or less
*3 The rod flange type is not available for the LEY25 with a 30 mm stroke and motor option "With lock."
*4 The head flange type is not available for the LEY32.

$13 \mathrm{I} / \mathrm{O}$ cable length [m]**

Nil	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

*1 When "Without driver" is selected for driver type, only "Nil: Without cable" can be selected Refer to page 271 if I/O cable is required. (Options are shown on page 271.)

(10) Cable type ${ }^{* 4 * 2}$

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

*1 The motor and encoder cables are included. (The lock cable is also included when the motor with lock option is selected.)
*2 Standard cable entry direction is

- Top mounting: (A) Axis side
- In-line: (B) Counter axis side
(Refer to page 270 for details.)

(12) Driver type* ${ }^{*}$

	Compatible driver	Power supply voltage [V]
Nil	Without driver	-
A1	LECSA1-S \square	100 to 120
A2	LECSA2-S \square	200 to 230
B1	LECSB1-S \square	100 to 120
B2	LECSB2-S \square	200 to 230
	LECSB2-T \square	200 to 240
C1	LECSC1-S \square	100 to 120
C2	LECSC2-S	200 to 230
	LECSC2-T	
S1	LECSS1-S \square	100 to 120
S2	LECSS2-S \square	200 to 230
	LECSS2-T \square	200 to 240

*1 When a driver type is selected, a cable is included. Select the cable type and cable length. Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil : Without cable and driver

Applicable Stroke Table												- Standard
Stroke Model	30	50	100	150	200	250	300	350	400	450	500	Manufacturable stroke range [mm]
LEY25	\bullet	-	\bullet	-	\bullet	-	-	-	-	-	-	15 to 400
LEY32	\bullet	\bullet	\bullet	-	\bullet	-	\bullet	-	\bullet	-	\bullet	20 to 500

* Please consult with SMC for non-standard strokes as they are produced as special orders.

Specifications: LECSA/LECSB/LECSC/LECSS

Model				LEY25S ${ }_{6}^{2} / \mathrm{T} 6-\mathrm{X} 5 / \mathrm{LEY} 25 \mathrm{DS}{ }_{6}^{2} / \mathrm{T} 6-\mathrm{X} 5$			LEY32S ${ }_{7}^{3} / \mathrm{T} 7-\mathrm{X} 5$ (Top mounting)			LEY32DS ${ }_{7}^{3} / \mathrm{T} 7-\mathrm{X} 5$ (In-line)		
	Work load [kg]	Horizontal*1		18	50	50	30	60	60	30	60	60
		Vertical*8		8	16	30	9	19	37	12	24	46
	Force [N]*2 (Set value: 15 to 30\%)*15			65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max. speed [mm/s]*3	Stroke range	Up to 300	900	450	225	1200	600	300	1000	500	250
			305 to 400	600	300	150						
			405 to 500	-	-	-	800	400	200	640	320	160
	Pushing speed [mm/s] ${ }^{* 4}$			35 or less			30 or less			30 or less		
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			5000			5000					
	Positioning repeatability [mm]		Basic type	± 0.02								
			High-precision type	± 0.01								
	Lost motion [mm]*5		Basic type	0.1 or less								
			High-precision type	0.05 or less								
	Lead [mm] (including pulley ratio)			12	6	3	20	10	5	16	8	4
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 6}$			50/20			50/20					
	Actuation type			Ball screw + Belt/Ball screw			Ball screw + Belt [1.25:1]			Ball screw		
	Guide type			Sliding bushing (Piston rod)			Sliding bushing (Piston rod)					
	Enclosure*7			IP65 equivalent								
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40			5 to 40					
	Operating humidity range [\%RH]			90 or less (No condensation)			90 or less (No condensation)					
	Regeneration option			May be required depending on speed and work load (Refer to pages 45 and 46.)								
	Motor output/Size			$100 \mathrm{~W} / \square 40$			200 W/D60					
	Motor type			AC servo motor (100/200 VAC)			AC servo motor (100/200 VAC)					
	Encoder*14			Motor type S2, S3: Incremental 17-bit encoder (Resolution: $131072 \mathrm{p} / \mathrm{rev}$) Motor type S6, S7: Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$) Motor type T6, T7: Absolute 22-bit encoder (Resolution: $4194304 \mathrm{p} / \mathrm{rev}$) (For LECSB-T \square, LECSS-T \square) Motor type T6, T7: Absolute 18-bit encoder (Resolution: 262144 p/rev) (For LECSC-T \square)								
	Power consumption [W]*9		Horizontal	45			65			65		
			Vertical	145			175			175		
	Standby power consumption when operating [W]*10		Horizontal	2			2			2		
			Vertical	8			8			8		
	Max. instantaneous power consumption [W]*11			445			724			724		
	Type*12			Non-magnetizing lock								
	Holding force [N]			131	255	485	157	308	588	197	385	736
	Power consumption [W] at $\mathbf{2 0}{ }^{\circ} \mathrm{C}$ *13			6.3			7.9			7.9		
				$24 \mathrm{VDC}_{-10 \%}^{0}$								

1 This is the maximum value of the horizontal work load. An external guide is necessary to support the load. The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*2 The force setting range (set values for the driver) for the force control with the torque control mode. Set it with reference to "Force Conversion Graph (Guide)" on pages 47, 48. When the control equivalent to the pushing operation of the LECP6 series controller is performed, select the LECSS-T or LECSB2-T driver.
The point table no. input method is used for the LECSB2-T. When selecting the LECSS2-T, combine it with a Simple Motion module (manufactured by Mitsubishi Electric Corporation) which has a pushing operation function. 3 The allowable speed changes according to the stroke.
*4 The allowable collision speed for collision with the workpiece with the torque control mode
*5 A reference value for correcting an error in reciprocal operation

* 6 Impact resistance: No maltunction occurred when the actuator was tested with a droop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was pertormed with the actuator in the initial state.)
Vibration resistance: No maltunction occurred in a test ranging between 45 to 2000 Hz . The test was pertormed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*7 Cannot be used in an environment where oil such as cutting oil splashes or it is constantly exposed to water Take appropriate protective measures. For details on enclosure, refer to "Enclosure" on page 186.
*8 When mounting vertically and using the product facing upwards in an environment where water is present, take necessary measures to prevent water from splashing on the rod cover, because water will accumulate on the rod seal due to the structure of the product.
*9 The power consumption (including the driver) is for when the actuator is operating.
*10 The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
*11 The maximum instantaneous power consumption (including the driver) is for when the actuator is operating. *12 Only when motor option "With lock" is selected
*13 For an actuator with lock, add the power consumption for the lock.
*14 The resolution will change depending on the driver type.
*15 For motor type T 6 and T 7 , the set value is from 12 to 24%.

Weight

Product Weight

Series			LEY25S ${ }_{6}^{2} /$ T6-X5 (Motor mounting position: Top mounting)									LEY32S ${ }_{7}^{3 / T 7-X 5 ~(M o t o r ~ m o u n t i n g ~ p o s i t i o n: ~ T o p ~ m o u n t i n g) ~}$										
Stroke [mm]			30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
	Incremental encoder		1.31	1.38	1.55	1.81	1.99	2.16	2.34	2.51	2.69	2.42	2.53	2.82	3.29	3.57	3.85	4.14	4.42	4.70	4.98	5.26
	Absolute encoder	S6/S7	1.37	1.44	1.61	1.87	2.05	2.22	2.40	2.57	2.75	2.36	2.47	2.76	3.23	3.51	3.79	4.08	4.36	4.64	4.92	5.20
		T6/T7	1.4	1.5	1.6	1.9	2.0	2.2	2.4	2.6	2.7	2.3	2.4	2.7	3.2	3.5	3.8	4.1	4.3	4.6	4.9	5.2
Series			LEY25DS ${ }_{6}^{2} /$ T6-X5 (Motor mounting position: In-line)									LEY32DS ${ }_{7} /$ T7-X5 (Motor mounting position: In-line)										
Stroke [mm]			30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
	Incremental encoder		1.34	1.41	1.58	1.84	2.02	2.19	2.37	2.54	2.72	2.44	2.55	2.84	3.31	3.59	3.87	4.16	4.44	4.72	5.00	5.28
	Absolute	S6/S7	1.40	1.47	1.64	1.90	2.08	2.25	2.43	2.60	2.78	2.38	2.49	2.78	3.25	3.53	3.81	4.10	4.38	4.66	4.94	5.22
	encoder	T6/T7	1.4	1.5	1.6	1.9	2.1	2.2	2.4	2.6	2.8	2.4	2.5	2.8	3.2	3.5	3.8	4.1	4.4	4.6	4.9	5.2

Additional Weight

Size		$\mathbf{2 5}$	$\mathbf{3 2}$
Lock	Incremental encoder	0.20	0.40
	Absolute encoder	0.30	0.66
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot bracket (2 sets including mounting bolt)	0.08	0.14	
Rod flange (including mounting bolt)	0.17	0.20	
Head flange (including mounting bolt)			
Double clevis (including pin, retaining ring, and mounting bolt)		0.16	0.22

LEY-X5 Series

Construction
Motor top mounting type: LEY_{32}^{25}

In-line motor type: $\operatorname{LEY}_{32}^{25} \mathrm{D}$

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw shaft	Alloy steel	
$\mathbf{3}$	Ball screw nut	Synthetic resin/Alloy steel	
4	Piston	Aluminum alloy	
$\mathbf{5}$	Piston rod	Stainless steel	Hard chrome plating
$\mathbf{6}$	Rod cover	Aluminum alloy	
$\mathbf{7}$	Bearing holder	Aluminum alloy	
$\mathbf{8}$	Rotation stopper	POM	
9	Socket	Free cutting carbon steel	Nickel plating
$\mathbf{1 0}$	Connected shaft	Free cutting carbon steel	Nickel plating
11	Bushing	Bearing alloy	
12	Bearing	-	
13	Return box	Aluminum die-cast	Coating
14	Return plate	Aluminum die-cast	Coating
15	Magnet	-	
16	Wear ring holder	Stainless steel	Stroke 101 mm or more
17	Wear ring	POM	Stroke 101 mm or more

No.	Description	Material	Note
$\mathbf{1 8}$	Screw shaft pulley	Aluminum alloy	
$\mathbf{1 9}$	Motor pulley	Aluminum alloy	
$\mathbf{2 0}$	Belt	-	
$\mathbf{2 1}$	Parallel pin	Stainless steel	
$\mathbf{2 2}$	Scraper	Nylon	
$\mathbf{2 3}$	Retaining ring	Steel for spring	Phosphate coated
$\mathbf{2 4}$	Motor adapter	Aluminum alloy	Coating
$\mathbf{2 5}$	Motor	-	
26	Lube-retainer	Felt	
$\mathbf{2 7}$	O-ring	NBR	
28	Gasket	NBR	
29	O-ring	NBR	
30	Motor block	Aluminum alloy	Coating
31	Hub	Urethane	
32	Spider	Alloy steel	Trivalent chromated
33	Socket (Male thread)	Free cutting carbon steel	Nickel plating
34	Nut		

Replacement Parts (Motor top mounting only/Belt

No.	Size	Order no.
20	$\mathbf{2 5}$	LE-D-2-2
	$\mathbf{3 2}$	LE-D-2-4

Replacement Parts/Grease Pack

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

[^18]
Dimensions

Motor top mounting type: LEY_{32}^{25}

Size	Stroke range [mm]	A	B	C	D	EH	EV	H		J	K	L	M	O1	R	PA	PB	V	S	T	\mathbf{U}
25	15 to 100	130.5	116	13	20	44	45.5	M8 x 1.25		24	17	14.5	34	M5 x 0.8	8	15.4	8.2	40	46	92	1
	101 to 400	155.5	141																		
32	20 to 100	148.5	130	13	25	51	56.5	M8 x 1.25		31	22	18.5	40	M6x 1.0	10	15.4	8.2	60	60	118	1
	101 to 500	178.5	160																		
Size	Stroke range [mm]	PC	Incremental encoder						Absolute encoder [S6/S7]						Absolute encoder [T6/T7]						Y
			Without lock			With lock			Without lock			With lock			Without lock			With lock			
			W	X	Z	W	X	Z	W	X	Z	W	X	Z	W	X	Z	W	X	Z	
25	15 to 100	15.4	87	120	14.1	123.9	156.9	15.8	82.4	115.4	14.1	123.5	156.5	515.8	82.4	115.4	14.1	123	156	15.8	51
	101 to 400																				
32	20 to 100	15.9	88.2	128.2	17.1	116.8	156.8	17.1	76.6	116.6	17.1	116.1	156.1	17.1	76.6	116.6	17.1	113.4	153.4	17.1	61
	101 to 500																				

Body Bottom Tapped

Size	Stroke range [mm]	MA	MB	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	46	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100			42	41		50				
	101 to 124						75				
	125 to 200			59	49.5						
	201 to 400			76	58						
32	20 to 39	25	55	22	36	30	50	M6x1	8.5	5	6
	40 to 100			36	43						
	101 to 124						80				
	125 to 200			53	51.5						
	201 to 500			70	60						

[^19]For the rod end male thread, refer to page 79. For the mounting bracket dimensions, refer to page 99.

LEY-X5 Series

Dimensions

In-line motor type: LEY ${ }_{32}^{25} \mathrm{D}$

Size	Stroke range [mm]	Incremental encoder							Absolute encoder [S6/S7]						Absolute encoder [T6/T7]								B			
		Without lock			With lock				Without lock			With lock			Without lock					With lock						
		A	W	Z	A	W	Z		A	W	Z	A	W	Z	A		VB	VC		A	VB	VC				
25	15 to 100	238	87	14.6	274.9	123.9	16.3		233.4	82.4	14.6	274.5	123.5	16.3	233	82.4		14.6		74	123	16.3	136.5			
25	101 to 400	263			299.9				258.4			299.5			258				99	161.5						
32	20 to 100	262.7	88.2	17.1	291.3	116.8	17.1		51.1	76.6	17.1	290.6	116.1	17.1	251.1	76.6			17.1		287.9	113.4	17.1	156		
	101 to 500	292.7			321.3				81.1			320.6			281			317.9			186					
Size	Stroke range [mm]	C	D	EH	EV	H		J	K	L	M	O1		R	PA	PB	-	,	S	T	U	PC	Y			
25	15 to 100	13	20	44	45.5	M8 x 1.25		24	17	14.5	34	M5 x 0.8		8	15.4	8.2	40	- 45		46.5	1.5	15.9	71.5			
	101 to 400																									
32	20 to 100	13	25	51	56.5	M8 $\times 1.25$		31	22	18.5	40	M6 x 1.0		10	15.4	8.2	6	- 60		61	1	15.9	87			
	101 to 500							31	22	18.5	40															

Body Bottom Tapped

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100		42	41						
	101 to 124		42			75				
	125 to 200		59	49.5						
	201 to 400		76	58						
32	20 to 39	25	22	36	30	50	M6x 1	8.5	5	6
	40 to 100		36	43		50				
	101 to 124		36			80				
	125 to 200		53	51.5						
	201 to 500		70	60						

*1 Range within which the rod can move
Make sure workpieces mounted on the rod do not interfere with the workpieces and facilities around the rod.
*2 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.
*3 The vent hole is the port for releasing to atmosphere. Do not apply pressure to this hole.
Attach tubing to the vent hole and place the end of the tubing so it is not exposed to dust or water.

For the rod end male thread, refer to page 79. For the mounting bracket dimensions, refer to page 99.

Electric Actuator/
 LEY-X5 (Made to Order) Series Lekv5, 32

Refer to page 50 for model selection. \quad Size 63 is available by selecting option P. Refer to page 89.

LECS \square Series $>$ p. 163

How to Order

(1) Accuracy

Nil	Basic type
\mathbf{H}	High-precision type

2 Size	
25	
	Motor mounting position
32	Nil
D	Top mounting

4 Motor type

Symbol	Type	Output [W]	Size	Compatible driver
V6*1	AC servo motor (Absolute encoder)	100	25	LECYM2-V5 LECYU2-V5
	200	32	LECYM2-V7 LECYU2-V7	

*1 For motor type V6, the compatible driver part number suffix is V 5 .
5 Lead [mm]

Symbol	LEY25	LEY32
A	12	$16(20)$
B	6	$8(10)$
C	3	$4(5)$

* The values shown in () are the leads for the top mounting type. (Equivalent leads which include the pulley ratio [1.25:1])

6 Stroke [mm]

$\mathbf{3 0}$	30
to	to
$\mathbf{5 0 0}$	500

For details, refer to the applicable stroke table below.
(7) Motor option

$\mathbf{N i l}$	Without option
\mathbf{B}	With lock

* When "With lock" is selected for the top mounting type, the motor body will stick out from the end of the body for size 25 with strokes of 30 mm or less.
Check for interference with workpieces before selecting a model.

8 Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

Applicable Stroke Table

Model	Stroke (mm)	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{3 5 0}$	$\mathbf{4 0 0}$	$\mathbf{4 5 0}$	$\mathbf{5 0 0}$
Manufacturable stroke range												
LEY25	\bullet	-	-	15 to 400								
LEY32	\bullet	20 to 500										

169

Motor mounting position: In-line

Motor mounting position: Top mounting

10 Cable type*1

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

*1 The motor and encoder cables are included. The motor cable for lock option is included when the motor with lock option is selected.

(13 I/O cable length [m]*

Nil	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

*1 When "Without driver" is selected for driver type, only "Nil: Without cable" can be selected. Refer to page 284 if I/O cable is required. (Options are shown on page 284.)

Compatible Driver

Driver type	MMECHATROLINK-II type	M ${ }^{\text {MECHATROLINK-III type }}$
Series	LECYM	LECYU
Applicable network	MECHATROLINK-II	MECHATROLINK-III
Control encoder	Absolute 20-bit encoder	
Communication device	USB communication, RS-422 communication	
Power supply voltage [V]	200 to 230 VAC (50/60 Hz)	
Reference page	277	

11 Cable length [m] ${ }^{* 1}$

$\mathbf{N i l}$	Without cable
$\mathbf{3}$	3
$\mathbf{5}$	5
\mathbf{A}	10
\mathbf{C}	20

*1 The length of the motor and encoder cables are the same. (For with lock)

12 Driver type

	Compatible driver	Power supply voltage [V]
Nil	Without driver	-
M2	LECYM2-V \square	200 to 230
U2	LECYU2-V \square	200 to 230

* When a driver type is selected, a cable is included. Select the cable type and cable length.

Specifications: LECY

Model				LEY25V6-X5/LEY25DV6-X5			LEY32V7-X5 (Top mounting)			LEY32DV7-X5 (In-line)		
Work load [kg]			Horizonta**	18	50	50	30	60	60	30	60	60
			Vertical*9	8	16	30	9	19	37	12	24	46
	Force [${ }^{\text {] }}{ }^{* 2}$ (Set value: 45 to 90%)			65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
4	Max.*3	Stroke range	Up to 300	900	450	225	1200	600	300	1000	500	250
	speed		305 to 400	600	300	150						
	[mm / s]		405 to 500	-	-	-	800	400	200	640	320	160
	Pushing	speed [mm/s	/s]*4	35 or less			30 or less			30 or less		
	Max. acceleration/deceleration [mm/s²]			5000			5000					
	Positioning repeatability [mm]		Basic type	± 0.02			± 0.02					
			High-precisiontype	± 0.01			± 0.01					
	Lost motion [mm]*5		Basic type	0.1 or less			0.1 or less					
			Hightreceisiontype	0.05 or less			0.05 or less					
	Lead [mm] (including pulley ratio)			12	6	3	20*6	10*6	5*6	16	8	4
	Impact/Vibration resistance [$\left.\mathrm{m} / \mathrm{s}^{2}\right]^{* 7}$			50/20			50/20					
				Ball screw + Belt (LEYC)/Ball screw (LEYCD)			Ball screw + Belt [1.25:1]			Ball screw		
	Guide type			Sliding bushing (Piston rod)			Sliding bushing (Piston rod)					
				IP65 equivalent								
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40			5 to 40					
	Operating humidity range [\%RH]			90 or less (No condensation)			90 or less (No condensation)					
	$\begin{array}{\|l\|} \hline \text { Conditions for*10 } \\ \text { "Regenerative resistor" [kg] } \\ \hline \end{array}$		Horizontal	Not required			Not required					
			Vertical	6 or more			4 or more					
	Motor output/Size			$100 \mathrm{~W} / \square 40$			200 W/ $\square 60$					
	Motor type			AC servo motor (200 VAC)			AC servo motor (200 VAC)					
	Encoder			Absolute 20-bit encoder (Resolution: $1048576 \mathrm{p} / \mathrm{rev}$)								
	Power consumption [W]*11		Horizontal	45			65			65		
			Vertical		145		175			175		
	Standby power consumption when operating $[\mathrm{W}]^{* 12}$		Horizontal	2			2			2		
			Vertical	8							8	
	Max. instantaneous power consumption [W]*13			445			724			724		
${ }_{\square}^{\circ} \mathrm{E}$ Type*14				Non-magnetizing lock								
戓管	Holding	force [N$]$		131	255	485	157	308	588	197	385	736
				5.5			6			6		
							$24 \mathrm{VDC}^{+10 \%}$					

*1 This is the maximum value of the horizontal work load. An external guide is necessary to support the load. The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*2 The force setting range (set values for the driver) for the force control with the torque control mode
Set it with reference to "Force Conversion Graph (Guide)" on page 54
*3 The allowable speed changes according to the stroke.
*4 The allowable collision speed for collision with the workpiece with the torque control mode
*5 A reference value for correcting an error in reciprocal operation
*6 Equivalent leads which include the pulley ratio [1.25:1]
*7 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)

* Cannot be used in an environment where oil such as cutting oil splashes or it is constantly exposed to water Take appropriate protective measures. For details on enclosure, refer to "Enclosure" on page 186.
*9 When mounting vertically and using the product facing upwards in an environment where water is present, take necessary measures to prevent water from splashing on the rod cover, because water will accumulate on the rod seal due to the structure of the product.
*10 The work load conditions which require "Regenerative resistor" when operating at the maximum speed (Duty ratio: 100\%)
Order the regenerative resistor separately. For details, refer to "Conditions for Regenerative Resistor (Guide)" on pages 52 and 53.
*11 The power consumption (including the driver) is for when the actuator is operating.
*12 The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
*13 The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
*14 Only when motor option "With lock" is selected
*15 For an actuator with lock, add the power consumption for the lock.

Weight

Dimensions

Motor top mounting type: LEY_{32}^{25}

Size	Stroke range [mm]	A	B	C	D	EH	EV	H	J	K	L	M	O1	R	PA	PB	V
25	15 to 100	130.5	116	13	20	44	45.5	M8 x 1.25	24	17	14.5	34	M5 x 0.8	8	15.4	8.2	40
	101 to 400	155.5	141														
32	20 to 100	148.5	130	13	25	51	56.5	M8 $\times 1.25$	31	22	18.5	40	M6 x 1.0	10	15.4	8.2	60
	101 to 500	178.5	160														

Size	Stroke	S	T	U	PC		thout lo			ith loc		Y
Size	range [mm]	S	T	U	PC	W	X	Z	W	X	Z	Y
25	15 to 100	46	92	1	15.4	82.5	115.5	11	127.5	160.5	11	51
	101 to 400											
32	20 to 100	60	118	1	15.9	80	120	14	120	160	14	61
	101 to 500											

Body Bottom Tapped

Size	Stroke range [mm]	MA	MB	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	46	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100			42	41						
	101 to 124						75				
	125 to 200			59	49.5						
	201 to 400			76	58						
32	20 to 39	25	55	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100			36	43		50				
	101 to 124						80				
	125 to 200			53	51.5						
	201 to 500			70	60						

[^20]
LEY-X5 Series

Dimensions

In-line motor type: $\operatorname{LEY}_{32}^{25} \mathrm{D}$

[mm]																				
Size	Stroke range [mm]	Without lock			With lock			B	C	D	EH	EV								
		A	W	Z	A	W	Z													
25	15 to 100	233.5	82.5	11.5	278.5	127.5	11.5	136.5	13	20	44	45.5								
25	101 to 400	258.5			303.5			161.5												
32	20 to 100	254.5	80	14	294.5	120	14	156	13	25	51	56.5								
	101 to 500	284.5			324.5			186												
Size	Stroke range [mm]	H		J	K	L	M	O1		R	PA	PB	V	S	T	U	PC	Y		
25	15 to 100	M8 x 1.25		24	17	14.5	34	M5 x 0.8		8	15.4	8.2	40	45	46.5	1.5	15.9	71.5		
	101 to 400																			
32	20 to 100	M8 x 1.25		31	22	18.5	40	M6 x 1.0		10	15.4	8.2	60	60	61	1	15.9	87		
32	101 to 500																			

Body Bottom Tapped

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100		42	41						
	101 to 124					75				
	125 to 200		59	49.5						
	201 to 400		76	58						
32	20 to 39	25	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100		36	43						
	101 to 124					80				
	125 to 200		53	51.5						
	201 to 500		70	60						

*1 Range within which the rod can move
Make sure workpieces mounted on the rod do not interfere with the workpieces and facilities around the rod.
*2 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.
*3 The vent hole is the port for releasing to atmosphere. Do not apply pressure to this hole.
Attach tubing to the vent hole and place the end of the tubing so it is not exposed to dust or water.

For the rod end male thread, refer to page 79. For the mounting bracket dimensions, refer to page 99.

LEY-X5 Series
 Auto Switch Mounting

Proper Auto Switch Mounting Position

Applicable auto switches: D-M9 \square A(V)

LEY25, 32
\Rightarrow Auto switch groove

Size	Stroke range	Auto switch position				Return to origin distance E	Operating range
		Mounting: Left facing		Mounting: Right facing			
		A	B	C	D		-
25	15 to 100	27	62.5	39	50.5	(2)	4.2
	105 to 400	52		64			
32	20 to 100	30.5	85.5	42.5	53.5	(2)	4.9
	105 to 500	90.5		102.5			

*1 Figures in the table above are used as a reference when mounting the auto switches for stroke end detection. Adjust the auto switch after confirming the operating condition in the actual setting.
*2 Switches cannot be mounted on the motor mounting side surface.
*3 For the LEYG with a guide, switches cannot be mounted on the guide attachment side (rod side).
*4 Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approximately $\pm 30 \%$ dispersion). It may change substantially depending on the ambient environment.

Auto Switch Mounting

Auto Switch Mounting Screw

Tightening Torque [$\mathrm{N} \cdot \mathrm{m}$]

Auto switch model	Tightening torque
$\mathbf{D}-\mathbf{M 9} \square \mathbf{A}(\mathbf{V})$	0.05 to 0.10

* When tightening the auto switch mounting screw (included with auto switch), use a watchmaker's screwdriver with a handle diameter of about 5 to 6 mm .

Water Resistant 2-Color Indicator Solid State Auto Switch: Direct Mounting Type D-M9NA(V)/D-M9PA(V)/D-M9BA(V) (\in RoHs

Auto Switch Specifications

Grommet

- Water (coolant) resistant type
- 2-wire load current is reduced (2.5 to 40 mA).
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red) Using flexible cable as standard spec.

Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.
Please consult with SMC if using coolant liquid other than water based solution.

Weight

Auto switch model		D-M9NA(V) ${ }^{\text {d }}$	D-M9PA(V)	D-M9BA(V)
Lead wire length	0.5 m (Nil)	8	8	7
	1 m (M)	14		13
	3 m (L)	41		38
	$5 \mathrm{~m}(\mathbf{Z})$	68		63

PLC: Programmable Logic Controller						
D-M9 \square A, D-M9 \square AV (With indicator light)						
Auto switch model	D-M9NA	D-M9NAV	D-M9PA	D-M9PAV	D-M9BA	D-M9BAV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range Red LED illuminates. Proper operating range Green LED illuminates.					
Standard	CE marking (EMC directive/RoHS directive)					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NA \square D-M9NAV \square D-M9PA \square D-M9PAV \square	D-M9BA \square	D-M9BAV \square	
Sheath	Outside diameter $[\mathrm{mm}]$	2.6			
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)		
	Outside diameter $[\mathrm{mm}]$	0.88			
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15			
	Strand diameter $[\mathrm{mm}]$	0.05			
Minimum bending radius $[\mathrm{mm}]$					

* Refer to the Web Catalog for solid state auto switch common specifications.
* Refer to the Web Catalog for lead wire lengths.

Dimensions

D-M9 \square A

D-M9 \square AV

Electric Actuator/

Dust-tight/Water-jet-proof $>$ p. 151

How to Order

(1) Size	(2) Motor mounting position	
16	Nil	Top mounting
25	R	Right side parallel
32	L	Left side parallel
40	D	In-line

(3) Motor type

4 Lead [mm]

Symbol	LEY16	LEY25	LEY32/40
A	10	12	16
B	5	6	8
C	2.5	3	4

(5) Stroke [mm]

$\mathbf{3 0}$	30
to	to
$\mathbf{5 0 0}$	500

* For details, refer to the applicable stroke table below.

Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

8 Mounting*5

Symbol	Type	Motor mounting position	
		In-line	
Nil	Ends tapped/Body bottom tapped*6	\bullet	\bullet
\mathbf{L}	Foot	\bullet	-
F	Rod flange*6	$\bullet^{* 8}$	\bullet
\mathbf{G}	Head flange*6	$\bullet^{* 9}$	-
\mathbf{D}	Double clevis*7	\bullet	-

6 Motor option*2

25A-LEY Series

Compatible Controller/Driver

LEC \square Series

Type	Step data input type	Step data input type	CC-Link direct input type	Programless type	Pulse input type
Series	LECP6	LECA6	LECPMJ	LECP1	LECPA
Features	Value (Step Standar	data) input ontroller	CC-Link direct input	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Servo motor (24 VDC)	Step motor (Servo/24 VDC)		
Max. number of step data	64 points			14 points	-
Power supply voltage	24 VDC				
Reference page	189	189	222	205	212

JXC \square Series

Type	EtherCAT ${ }^{\text {® }}$ direct input type	EtherNet/IPTM direct input type	PROFINET direct input type	DeviceNet ${ }^{\text {TM }}$ direct input type	IO-Link direct input type
Series	JXCE1	JXC91	JXCP1	JXCD1	JXCL1
Features	EtherCAT ${ }^{\circledR}$ direct input	EtherNet/IPTM direct input	PROFINET direct input	DeviceNet ${ }^{\text {TM }}$ direct input	IO-Link direct input
Compatible motor	Step motor (Servo/24 VDC)				
Max. number of step data	64 points				
Power supply voltage	24 VDC				
Reference page	230				

Specific Produc Precautions	AC Servo Motor		Step Motor (Servo/24 VDC)/Servo Motor (24 VDC)						Environment		AC Servo Motor		Step Motor (Servo/24 VDC//Servo Motor (24 VDC)		Model Selection
	LECY \square	LECS \square	JXC \square	LECPMJ	LECPA	LECP1	LEC-G	LECA6	25A-LEY	LEY-X5	LEYG	LEY	LEYG	LEY	

Electric Actuator/
 Rod Type Semonav bilive compaide
 * Refer to the table below.

LECY \square Series \downarrow p. 181

 Series compatible with secondary batteries

Lead [mm]

Symbol	LEY25	LEY32 $^{* 1}$
A	12	$16(20)$
B	6	$8(10)$
C	3	$4(5)$

*1 The values shown in () are the leads for the size 32 top mounting, right/left side parallel types. (Equivalent leads which include the pulley ratio [1.25:1])

4 Motor type*1

Symbol	Type	Output [W]	Actuator size	Compatible drivers*3	$\begin{array}{\|c\|} \hline \text { UL- } \\ \text { compliant } \end{array}$
S2*1	AC servo motor(Incremental encoder)	100	25	LECSAD-S1	-
S3		200	32	LECSAD-S3	-
S6*1	AC servo motor (Absolute encoder)	100	25	LECSB $\square-S 5$ LECSCD-S5 LECSS■-S5	-
S7		200	32	LECSBD-S7	-
				LECSCD-S7	
				LECSSD-S7	
T6*2, *4	AC servo motor (Absolute encoder)	100	25	$\begin{aligned} & \text { LECSB2-T5 } \\ & \text { LECSC2-T5 } \end{aligned}$	-
				LECSS2-T5	$0^{* 4}$
T7*4		200	32	LECSB2-T7 LECSC2-T7	-
				LECSS2-T7	$0^{* 4}$

*1 For motor type S2 and S6, the compatible driver part number suffixes are S1 and S5 respectively.
*2 For motor type T6, the compatible driver part number suffix is T5.
*3 Click here for details on the driver.
*4 The only compatible drivers complaint with UL standards are the LECSS2-T5 and LECSS2-T7.

6 Stroke [mm]

$\mathbf{3 0}$	30
to	to
$\mathbf{5 0 0}$	500

For details, refer to the applicable stroke table below.

8 Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread $(1$ rod end nut is included.)

Mounting Bracket Part Nos. for the 25A- Series

Applicable size	Foot*1 $^{* 1}$	Flange	Double clevis
$\mathbf{2 5}$	$25-$ LEY-L025	$25-$ LEY-F025	$25-$ LEY-D025
$\mathbf{3 2}$	$25-$ LEY-L032	$25-$ LEY-F032	$25-$ LEY-D032
Surface treatment	RAYDENT ${ }^{\circledR}$	RAYDENT®	Coating (Size 16: Electroless nickel plating)

*1 When ordering foot brackets, order 2 pieces per actuator.

* Parts belonging to each bracket are as follows.

Foot, Flange: Body mounting bolt, Double clevis: Clevis pin, Type C retaining ring for axis, Body mounting bolt

Applicable Stroke Table

	30	50	100	150	200	250	300	350	400	450	500	Manufacturable stroke range [mm]
25A-LEY25	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	-	\bigcirc	-	-	15 to 400
25A-LEY32	\bigcirc	20 to 500										

* Please consult with SMC for non-standard strokes as they are produced as special orders.

Motor option

Nil	Without option
\mathbf{B}	With lock*1

*1 When "With lock" is selected for the top mounting and right/left side parallel types, the motor body will stick out from the end of the body for size 25 with strokes of 30 mm or less. Check for interference with workpieces before selecting a model.

9 Mounting*1

Symbol	Type	Motor mounting position	
	Top/Parallel	In-line	
Nil	Ends tapped/ Body bottom tapped		
L	Foot		-
F	Rod flange*2	${ }^{* 4}$	\bigcirc
G	Head flange*2 $^{* 2}$	${ }^{* 5}$	-
D	Double clevis*3		-

*1 The mounting bracket is shipped together with the product but does not come assembled.
*2 For the horizontal cantilever mounting of the rod flange, head flange, or ends tapped types, use the actuator within the following stroke range.
25A-LEY25: 200 mm or less .25A-LEY32: 100 mm or less
*3 For the mounting of the double clevis type, use the actuator within the following stroke range. . 25A-LEY25: 200 mm or less 25A-LEY32: 200 mm or less
*4 The rod flange type is not available for the 25A-LEY25 with a 30 mm stroke and motor option "With lock."
*5 The head flange type is not available for the 25A-LEY32.

Solid state auto switches should be ordered separately.

 For details on auto switches, refer to the Web Catalog.
Applicable auto switches

D-M9N(V)-900, D-M9P(V)-900, D-M9B(V)-900
D-M9NW(V)-900, D-M9PW(V)-900, D-M9BW(V)-900

Motor mounting position:
Top/Parallel

Motor mounting position: In-line

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

*1 The motor and encoder cables are included. (The lock cable is also included when the motor with lock option is selected.)
*2 Standard cable entry direction is
Top/Parallel: (A) Axis side
In-line: (B) Counter axis side

(13) IO cable length $[\mathrm{m}]^{* 1}$

Nil	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

*1 When "Without driver" is selected for driver type, only "Nil: Without cable" can be selected. Refer to page 271 if I/O cable is required.

11 Cable length ${ }^{* 1}$ [m]

$\mathbf{N i l}$	Without cable
$\mathbf{2}$	2
$\mathbf{5}$	5
\mathbf{A}	10

*1 The length of the encoder, motor, and lock cables are the same.

2 Driver type*1

	Compatible driver	Power supply voltage [V]	UL-compliant
Nil	Without driver	-	-
A1	LECSA1-S \square	100 to 120	-
A2	LECSA2-S \square	200 to 230	-
B1	LECSB1-S \square	100 to 120	-
B2	LECSB2-S \square	200 to 230	-
	LECSB2-T \square	200 to 240	-
C1	LECSC1-S \square	100 to 120	-
$\mathbf{C 2}$ C2	LECSC2-S \square	200 to 230	-
	LECSC2-T \square		-
S1	LECSS1-S \square	100 to 120	-
$\mathbf{S 2}$ S2	LECSS2-S \square	200 to 230	-
	LECSS2-T \square	200 to 240	-

*1 When a driver type is selected, a cable is included. Select the cable type and cable length.
Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil : Without cable and driver

* The 25A- series specifications and dimensions are the same as those of the standard model.

Compatible Driver

Driver type	Pulse input type/ Positioning type	Pulse input type	CC-Link direct input type	SSCNETIII type	Pulse input type	CC-Link direct input type	SSCNEFIIIH type
Series	LECSA	LECSB	LECSC	LECSS	LECSB-T	LECSC-T	LECSS-T
Number of point tables	Up to 7	-	Up to 255 (2 stations occupied)	-	Up to 255	Up to 255 (2 staitions occupied)	-
Pulse input	\bigcirc	\bigcirc	-	-	\bigcirc	-	-
Applicable network	-	-	CC-Link	SSCNETIII	-	CC-Link	SSCNETIII/H
Control encoder	Incremental 17-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder	Absolute 22-bit encoder	Absolute 18-bit encoder	Absolute 22-bit encoder
Communication function	USB communication	USB communicaion, RS422 communicion	USS communicaion, RS422 communicion	USB communication	USB communication,	RS422 communication	USB communication
Power supply voltage [V]	100 to 120	VAC (50/60 Hz),	200 to 230 VAC (50/60 Hz)	$\begin{aligned} & 200 \text { to } 240 \text { VAC } \\ & (50 / 60 \mathrm{~Hz}) \end{aligned}$	$\begin{gathered} 200 \text { to } 230 \mathrm{VAC} \\ (50 / 60 \mathrm{~Hz}) \end{gathered}$	200 to 240 VAC ($50 / 60 \mathrm{~Hz}$)
Reference page	Click here						

Electric Actuator/
 Rod Type semany bian compaide
 25A-LEY Series
 LEY25, 32
 Size 25,32

How to Order

 secondary batteries

(3) Motor mounting position

Nil	Top mounting
R	Right side parallel
L	Left side parallel
D	In-line

4 Motor type

Symbol	Type	Output $[W]$	Size	Compatible driver
V6*1	AC servo motor (Absolute encoder)	100	25	LECYM2-V5 LECYU2-V5
	V7	200	32	LECYM2-V7 LECYU2-V7

*1 For motor type V6, the compatible driver part number suffix is V 5 .
5 Lead [mm]

Symbol	25A-LEY25	25A-LEY32*1
A	12	$16(20)$
B	6	$8(10)$
C	3	$4(5)$

*1 The values shown in () are the leads for the size 32 top mounting, right/left side parallel types. (Equivalent leads which include the pulley ratio [1.25:1])

8 Rod end thread	
Nil	Rod end female thread
\mathbf{M}	Rod end male thread $(1$ rod end nut is included.)

6 Stroke [mm]	
$\mathbf{3 0}$	30
to	to
500	500

* For details, refer to the applicable stroke table below.
7 Motor option

$\mathbf{N i l}$	Without option
\mathbf{B}	With lock*1

*1 When "With lock" is selected for the top mounting and right/left side parallel types, the motor body will stick out from the end of the body for size 25 with strokes of 30 mm or less. Check for interference with workpieces before selecting a model.

Mounting*

*1 The mounting bracket is shipped together with the product but does not come assembled.
*2 For the horizontal cantilever mounting of the rod flange, head flange, or ends tapped types, use the actuator within the following stroke range. - LEY25: 200 mm or less . LEY32: 100 mm or less *3 For the mounting of the double clevis type, use the actuator within the following stroke range. LEY25: 200 mm or less . LEY32: 200 mm or less
*4 The rod flange type is not available for the LEY25 with a 30 mm stroke and motor option "With lock."
*5 The head flange type is not available for the LEY32.

Mounting Bracket Part Nos. for the 25A- Series

Applicable size	Foot*1	Flange	Double clevis
$\mathbf{2 5}$	$25-$ LEY-L025	$25-$ LEY-F025	$25-$ LEY-D025
$\mathbf{3 2}$	$25-$ LEY-L032	$25-$ LEY-F032	$25-$ LEY-D032
Surface treatment	RAYDENT®	RAYDENT ${ }^{\circledR}$	Coating (Size 16: Electroless nickel plating)

*1 When ordering foot brackets, order 2 pieces per actuator.

* Parts belonging to each bracket are as follows.

Solid state auto switches should be ordered separately. For details on auto switches, refer to the Web Catalog.

Applicable auto switches

D-M9N(V)-900, D-M9P(V)-900, D-M9B(V)-900
Foot, Flange: Body mounting bolt, Double clevis: Clevis pin, Type C retaining ring for axis, D-M9NW(V)-900, D-M9PW(V)-900, D-M9BW(V)-900 Body mounting bolt

Applicable Stroke Table

Model Stroke $[\mathrm{mm}]$	30	50	100	150	200	250	300	350	400	450	500	Manufacturable stroke range [mm]
25A-LEY25	\bigcirc	,	-	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	15 to 400
25A-LEY32	\bigcirc	20 to 500										

[^21]AC Servo Motor
Size 25, 32
Secondary Battery Compatible

Motor mounting position: Top/Parallel

Motor mounting position: In-line

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

*1 The motor and encoder cables are included. (The lock cable is also included when the motor with lock option is selected.)
*2 Standard cable entry direction is

- Top/Parallel: (A) Axis side

In-line: (B) Counter axis side

(13) IO cable length $[m]^{* 1}$

Nil	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

11 Cable length [m]**

Nil	Without cable
$\mathbf{3}$	3
$\mathbf{5}$	5
\mathbf{A}	10
\mathbf{C}	20

*1 The length of the motor and encoder cables are the same. (For with lock)

12 Driver type

	Compatible driver	Power supply voltage [V]
Nil	Without driver	-
M2	LECYM2-V \square	200 to 230
U2	LECYU2-V \square	200 to 230

* When a driver type is selected, a cable is included. Select the cable type and cable length.
*1 When "Without driver" is selected for driver type, only "Nil: Without cable" can be selected. Refer to page 284 if I/O cable is required.

The 25A- series specifications and dimensions are the same as those of the standard model.

Compatible Driver

Driver type	MMECHATROLINK-II type	MMECHATROLINK-III type
Series	LECYM	LECYU
Applicable network	MECHATROLINK-II	MECHATROLINK-III
Control encoder	Absolute 20-bit encoder	
Communication device	USB communication, RS-422 communication	
Power supply voltage [V]	200 to 230 VAC (50/60 Hz)	
Reference page	277	

* Copper and zinc materials are used for the motors, cables, controllers/drivers.

LEY/LEYG Series
 Electric Actuators Specific Product Precautions 1

\triangle
Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website: https://www.smcworld.com

Design/Selection

\triangle Warning

1. Do not apply a load in excess of the specification limits.

Select a suitable actuator by work load and allowable lateral load on the rod end. If a load in excess of the specification limits is applied to the piston rod, the generation of play in the piston rod sliding parts, reduced accuracy, etc., may occur and adversely affect the operation and service life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
This can cause a malfunction.
3. When used as a stopper, select the LEYG series "Sliding bearing" for strokes of $\mathbf{3 0} \mathbf{~ m m}$ or less.
4. When used as a stopper, fix the main body with a guide attachment ("Top mounting" or "Bottom mounting").
If the end of the actuator is used to fix the main body (end mounting), the excessive load acts on the actuator, which may adversely affect the operation and service life of the product.

Handling

© Caution

1. INP output signal

1) Positioning operation

When the product comes within the set range of the step data [In position], the INP output signal will turn ON. Initial value: Set to [0.50] or higher.
2) Pushing operation

When the effective force exceeds the step data [Trigger LV], the INP output signal will turn ON.
Use the product within the specified range of the [Pushing force] and [Trigger LV].
a) To ensure that the actuator pushes the workpieces with the set [Pushing force], it is recommended that the [Trigger LV] be set to the same value as the [Pushing force].
b) When the [Pushing force] and the [Trigger LV] are set below the specified range, the INP output signal will turn ON from the pushing start position.
<Limit Values for Pushing Force and Trigger Level in Relation to Pushing Speed> Without Load

Model	Lead	Pushing speed [mm/s]	Pushing force (Setting input value)	Model	Lead	Pushing speed [mms]	Pushing force (Setting innut value)
LEYप16]	A/B/C	21 to 50	60 to 85%	LEY $\square 16 \square \mathrm{~A}$	A/B/C	21 to 50	80 to 95\%
LEY $\square 25 \square$	A/B/C	21 to 35	50 to 65\%	LEY $25 \square \mathrm{~A}$	A/B/C	21 to 35	80 to 95%
LEY $\square 32 \square$	A	24 to 30	60 to 85\%				
	B/C	21 to 30					
LEYロ40]	A	24 to 30	50 to 65\%				
	B/C	21 to 30					

There is a limit to the pushing force in relation to the pushing speed. If the product is operated outside of the range (low pushing force), the completion signal [INP] may be output before the pushing operation has been completed (during the moving operation). If operating with the pushing speed below the min. speed, please check for operating problems before using the product.

LEY/LEYG Series
 Electric Actuators Specific Product Precautions 2

\triangle
Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website: https://www.smcworld.com

Handling

\triangle Caution

8. Do not scratch or dent the sliding parts of the piston rod by bumping them or placing objects on them.
The piston rod and guide rod are manufactured to precise tolerances, so even a slight deformation may cause a malfunction.
9. When an external guide is used, connect it in such a way that no impact or load is applied to it.
Use a freely moving connector (such as a floating joint).
10. Do not operate by fixing the piston rod and moving the actuator body.
Excessive load will be applied to the piston rod, resulting in damage to the actuator and a reduced service life of the product.
11. When an actuator is operated with one end fixed and the other free (ends tapped or flange), a bending moment may act on the actuator due to vibration generated at the stroke end, which can damage the actuator. In such cases, install a mounting bracket to suppress the vibration of the actuator body or reduce the speed so that the actuator does not vibrate at the stroke end.

Also, use a mounting bracket when moving the actuator body or when a long stroke actuator is mounted horizontally and fixed at one end.
12. Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod.
This may cause the deformation of the non-rotating guide, abnormal auto switch responses, play in the internal guide, or an increase in the sliding resistance.
Refer to the table below for the approximate values of the allowable range of rotational torque.

Allowable rotational	LEY16 \square	LEY25 \square	LEY32/40	LEY63
torque [$\mathrm{N} \cdot \mathrm{m}$] or less	0.8	1.1	1.4	2.8

When screwing a bracket or nut into the piston rod end, hold the flats of the end of the "socket" with a wrench (the piston rod should be fully retracted). Do not apply tightening torque to the non-rotating mechanism.

13. When rotational torque is applied to the end of the plate, use it within the allowable range. [LEYG series] Failure to do so may cause the deformation of the guide rod and bushing, play in the guide, or an increase in the sliding resistance.
14. For pushing operations, use the product within the duty ratio range below.
The duty ratio is the fraction of time that the product can keep pushing.

- Step motor (Servo/24 VDC)

LEY16 \square

Pushing force [\%]	Ambient temperature: $25^{\circ} \mathrm{C}$ or less		Ambient temperature: $40^{\circ} \mathrm{C}$	
	Duty ratio [\%]	Continuous pushing time [minute]	Duty ratio [\%]	Continuous pushing time [minute]
40 or less	100	-	100	-
50			70	12
70			20	1.3
85			15	0.8

LEY25 $\square / 40 \square$

Pushing force [\%]	Ambient temperature: $25^{\circ} \mathrm{C}$ or less		Ambient temperature: $40^{\circ} \mathrm{C}$	
	Duty ratio [\%]	Continuous pushing time [minute]	Duty ratio [\%]	Continuous pushing time [minute]
65 or less	100	-	100	-

LEY32 \square

Pushing force [\%]	Ambient temperature: $25^{\circ} \mathrm{C}$ or less Duty ratio [\%]	Continuous pushing time [minute]	Ambient temperature: $40^{\circ} \mathrm{C}$ [\%] ratio [\% less	Continuous pushing time [minute]
	100	-	100	-
		-	50	15

- Servo motor (24 VDC)

LEY16A \square

Pushing force $[\%]$	Ambient temperature: $25^{\circ} \mathrm{C}$ or less	Ambient temperature: $40^{\circ} \mathrm{C}$		
Duty ratio $[\%]$	Continuous pushing time [minute]	Duty ratio $[\%]$	Continuous pushing time [minute] $]$	
95 or less	100	-	100	-

LEY25A \square

Pushing force [\%]	Ambient temperature: $25^{\circ} \mathrm{C}$ or lessAmbient temperature: $40^{\circ} \mathrm{C}$ Duty ratio $[\%]$	Continuous pushing time [minute]	Duty ratio $[\%]$	Continuous pushing time [minute]
	100	-	100	-

15. When mounting the product, secure a space of 40 mm or more to allow for bends in the cable.

16. When mounting a bolt, workpiece, or jig, hold the flats of the piston rod end with a wrench so that the piston rod does not rotate. The bolt should be tightened within the specified torque range.

Failure to do so may cause abnormal auto switch responses, play in the internal guide, or an increase in the sliding resistance.

LEY/LEYG Series
 Electric Actuators Specific Product Precautions 3

\triangle
Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website: https://www.smcworld.com

Handling

\triangle Caution

17. When mounting the product and/or a workpiece, tighten the mounting screws within the specified torque range.

Tightening the screws with a higher torque than recommended may cause a malfunction, while tightening with a lower torque can cause the displacement of the mounting position or, in extreme conditions, the actuator could become detached from its mounting position.
<LEY series>
Workpiece fixed/Rod end female thread

| Model | Screw
 size | Max. tightening
 torque $[\mathrm{N} \cdot \mathrm{m}]$ | Max. screw-in
 depth $[\mathrm{mm}]$ | End socket widh
 across flats $[\mathrm{mm}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| EEY16 | $\mathrm{M} 5 \times 0.8$ | 3.0 | 10 | 14 |
| LEY25 | $\mathrm{M} 8 \times 1.25$ | 12.5 | 13 | 17 |
| LEY32/40 | $\mathrm{M} 8 \times 1.25$ | 12.5 | 13 | 22 |
| LEY63 | $\mathrm{M} 16 \times 2$ | 106 | 21 | 36 |

Workpiece fixed/Rod end male thread (When "Rod end male thread" is selected)

screw-in depth

Model	Thread size	Max. tightening torque [$\mathrm{N} \cdot \mathrm{m}$]	Effective thread length [mm]	End socket widh across flats [mm]
LEY16	M8 x 1.25	12.5	12	14
LEY25	M14 $\times 1.5$	65.0	20.5	17
LEY32/40	M14 $\times 1.5$	65.0	20.5	22
LEY63	M18 $\times 1.5$	97.0	26	36
Model	Rod end nut			
	Widh arossalas [mm]	Length [mm]		
LEY16	13	5	5 or more	
LEY25	22	8	8 or more	
LEY32/40	22	8	8 or more	
LEY63	27	11	18	

Body fixed/Body bottom tapped type (When "Body bottom tapped" is selected)

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $[\mathrm{mm}]$
LEY16	$\mathrm{M} 4 \times 0.7$	1.5	5.5
LEY25	$\mathrm{M} 5 \times 0.8$	3.0	6.5
LEY32/40	$\mathrm{M} 6 \times 1.0$	5.2	8.8
LEY63	$\mathrm{M} 8 \times 1.25$	12.5	10

Body fixed/Rod side/Head side tapped type

<LEYG series>

Workpiece fixed/Plate tapped type

θ	Model	$\begin{aligned} & \text { Screw } \\ & \text { size } \end{aligned}$	Max. tightening torque [$\mathrm{N} \cdot \mathrm{m}$]	Max. screw-in depth $[\mathrm{mm}]$
\bigcirc	LEYG16 ${ }_{\text {L }}$	M5 x 0.8	3.0	8
- ${ }^{\text {¢ }}$ U Tap	LEYG25 ${ }_{\text {L }}$	M6 x 1.0	5.2	11
	LEYG ${ }_{40 \mathrm{~L}}^{32 \mathrm{M}}$	M6 x 1.0	5.2	12

Body fixed/Top mounting

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Length: L $[\mathrm{mm}]$
LEYG16 $_{\mathrm{L}}^{\mathrm{M}}$	$\mathrm{M} 4 \times 0.7$	1.5	32
LEYG25 $_{\mathrm{M}}$	$\mathrm{M} 5 \times 0.8$	3.0	40.3
LEYG $_{40 \mathrm{~L}}^{32 \mathrm{~L}}$	$\mathrm{M} 5 \times 0.8$	3.0	50.3

Body fixed/Bottom mounting

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $[\mathrm{mm}]$
LEYG16 $_{\mathrm{L}}^{\mathrm{M}}$	$\mathrm{M} 5 \times 0.8$	3.0	10
LEYG25 $_{\mathrm{L}}$	$\mathrm{M} 6 \times 1.0$	5.2	12
LEYG $_{40 \mathrm{~L}}^{32 \mathrm{~L}}$	$\mathrm{M} 6 \times 1.0$	5.2	12

Body fixed/Head side tapped type

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $[\mathrm{mm}]$
LEYG16L $^{\text {M }}$	$\mathrm{M} 4 \times 0.7$	1.5	7
LEYG25 $^{\mathrm{M}}$	$\mathrm{M} 5 \times 0.8$	3.0	8
LEYG $_{40 \mathrm{~L}}^{32 \mathrm{~L}}$	$\mathrm{M} 6 \times 1.0$	5.2	10

18. Keep the flatness of the mounting surface within the following ranges when mounting the actuator body and workpiece.

Mounting the product on an uneven workpiece or base may cause an increase in the sliding resistance.

| Model | Mounting position | | Flatness |
| :--- | :--- | :--- | :--- | :--- | :--- |
| LEY \square | Body/Body bottom | | 0.1 mm |
| or less | | | |$|$

19. When using auto switches with the guide rod type LEYG series, the following limits apply. Please consider the following before selecting the product.

- Auto switches must be inserted from the front side with the rod (plate) sticking out.
- Auto switches with perpendicular electrical entries cannot be used.
- Auto switches cannot be fixed with the parts hidden behind the guide attachment (the side of the rod that sticks out).
- Please consult with SMC when using auto switches on the side of the rod that sticks out.

LEY/LEYG Series
 Electric Actuators Specific Product Precautions 4

\triangle
Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website: https://www.smcworld.com

Handling

\triangle Caution

20. When using the product with the IP65 or equivalent specifications, be sure to mount the tubing to the vent hole, and then place the end of the tubing in an area where it is not exposed to dust or water. When the actuator is used without mounting the fitting and tubing to the vent hole, water or dust may enter the inside of the actuator, causing a malfunction.
21. When fluctuations in the load are caused during operation, malfunction, noise, or alarm generation may occur. (In the case of the AC servo motor)
The gain tuning may not be suitable for fluctuating loads.
Adjust the gain properly by following the instructions in the driver manual.

Enclosure

- First Digit:

Degree of protection against solid foreign objects

$\mathbf{0}$	Not protected
$\mathbf{1}$	Protected against solid foreign objects of $50 \mathrm{mmø}$ and larger
$\mathbf{2}$	Protected against solid foreign objects of 12 mm and larger
$\mathbf{3}$	Protected against solid foreign objects of 2.5 mm and larger
$\mathbf{4}$	Protected against solid foreign objects of 1.0 mm and larger
$\mathbf{5}$	Dust protected
$\mathbf{6}$	Dust-tight

- Second Digit:

Degree of protection against water

0	Not protected	-
1	Protected against vertically falling water droplets	Dripproof type 1
2	Protected against vertically falling water droplets when enclosure is tilted up to 15°	Dripproof type 2
3	Protected against rainfall when enclosure is tilted up to 60°	Rainproof type
4	Protected against splashing water	Splashproof type
5	Protected against water jets	Water-jetproof type
6	Protected against powerful water jets	Powerful water-jet-proof type
7	Protected against the effects of temporary immersion in water	Immersible type
8	Protected against the effects of continuous immersion in water	Submersible type

Example) IP65: Dust-tight, Water-jet-proof type

"Water-jet-proof" means that no water enters the equipment that could hinder it from operating normally when water is applied for 3 minutes in the prescribed manner. Take appropriate protective measures as the device is not usable in environments where droplets of water are splashed constantly.

Maintenance

. Warning

1. Ensure that the power supply is stopped and the workpiece is removed before starting maintenance work or replacing the product.

- Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Belt check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months/ $250 \mathrm{~km} / 5$ million cycles*1	\bigcirc	\bigcirc

*1 Select whichever comes first.

- Items for visual appearance check

1. Loose set screws, Abnormal amount of dirt, etc.
2. Check for visible damage, Check of cable joint
3. Vibration, Noise

- Items for belt check

Stop operation immediately and replace the belt when any of the following occur. In addition, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out

Canvas fiber becomes fuzzy, Rubber is coming off and the fiber has become whitish, Lines of fibers have become unclear
b. Peeling off or wearing of the side of the belt

Belt corner has become rounded and frayed threads stick out
c. Belt is partially cut

Belt is partially cut, Foreign matter caught in the teeth of other parts is causing damage
d. A vertical line on belt teeth is visible

Damage which is made when the belt runs on the flange
e. Rubber back of the belt is softened and sticky
f. Cracks on the back of the belt are visible

Controller/Driver LEC $\square / J X C \square$ Series

<Single Axis Controllers>

Step Data Input Type
Gateway Unit

Step Motor
(Servo/24 VDC)
LECP6 Series

Programless Type
Step Motor
(Servo/24 VDC)
(24 VDC)
LECA6 Series

JXC \square Series

<Multi-Axis Controllers>
EtherNet/IPTM Direct Input Type p. 239

For 3 axes JXC92 Series

Parallel I/O/EtherNet/IPTM Direct Input Type p. 241

JXC73 Series JXC83 Series

JXC93 Series Ether' 'et/IP

Controller (Step Data Input Type) Step Motor (Servo/24 VDC)

LECP6 Series Servo Motor (24 VDC)
LECA6 Series

How to Order

\triangle Caution

[CE-compliant products]
(1) EMC compliance was tested by combining the electric actuator LE series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
(2) For the LECA6 series (servo motor controller), EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 197 for the noise filter set. Refer to the LECA Operation Manual for installation. [UL-compliant products]
When compliance with UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

* When controller equipped type is selected when ordering the LE series, you do not need to order this controller.

The controller is sold as single unit after the compatible actuator is set.

Confirm that the combination of the controller and actuator is correct.

<Check the following before use.>

(1) Check the actuator label for the model number. This number should match that of the controller.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

LEY16B-100

(1)

Precautions for blank controllers (LEC $\square 6 \square \square$-BC)

A blank controller is a controller to which the customer can write the data of the actuator it is to be combined and used with. Use the dedicated software (LECBCW) for data writing.

- Please download the dedicated software (LEC-BCW) via our website.
- Order the communication cable for controller setting (LEC-W2A-C) separately to use this software.

SMC website
https://www.smcworld.com

* Refer to the operation manual for using the products. Please download it via our website, https://www.smcworld.com

Specifications

Basic Specifications

Item	LECP6	LECA6
Compatible motor	Step motor (Servo/24 VDC)	Servo motor (24 VDC)
Power supply*1	Power voltage: 24 VDC $\pm 10 \% * 2$ [Including motor drive power, control power, stop, lock release]	Power voltage: 24 VDC $\pm 10 \%{ }^{* 2}$ [Including motor drive power, control power, stop, lock release]
Parallel input	11 inputs (Photo-coupler isolation)	
Parallel output	13 outputs (Photo-coupler isolation)	
Compatible encoder	Incremental A/B phase (800 pulse/rotation)	Incremental A/B (800 pulse/rotation)/Z phase
Serial communication	RS485 (Modbus protocol compliant)	
Memory	EEPROM	
LED indicator	LED (Green/Red) one of each	
Lock control	Forced-lock release terminal*3	
Cable length [m]	I/O cable: 5 or less, Actuator cable: 20 or less	
Cooling system	Natural air cooling	
Operating temperature range $\left[{ }^{\circ} \mathrm{C}\right]$	0 to 40 (No freezing)	
Operating humidity range [\%RH]	90 or less (No condensation)	
Storage temperature range $\left[{ }^{\circ} \mathrm{C}\right]$	-10 to 60 (No freezing)	
Storage humidity range [\%RH]	90 or less (No condensation)	
Insulation resistance [M 2]	Between the housing and SG terminal: 50 (500 VDC)	
Weight [g]	150 (Screw mounting), 170 (DIN rail mounting)	

*1 Do not use the power supply of "inrush current prevention type" for the controller power supply. When compliance with UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.
*2 The power consumption changes depending on the actuator model.
Refer to the specifications of actuator for more details.
*3 Applicable to non-magnetizing locks

How to Mount

a) Screw mounting (LEC $\square 6 \square \square-\square$) (Installation with two M4 screws)

b) DIN rail mounting (LEC $\square 6 \square \square \mathrm{D}-\square$)
(Installation with the DIN rail)

Hook the controller on the DIN rail and press the lever of section \mathbf{A} in the arrow direction to lock it.

* When size 25 or more of the LE series are used, the space between the controllers should be 10 mm or more.

DIN rail

L Dimensions [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

AXT100-DR- \square

* For \square, enter a number from the No. line in the table below.

Refer to the dimension drawings on page 191 for the mounting dimensions.

DIN rail mounting adapter

LEC-D0 (with 2 mounting screws)

This should be used when the DIN rail mounting adapter is mounted onto a screw mounting type controller afterward.

LECP6 Series

LECA6 Series

Dimensions

a) Screw mounting (LEC $\square 6 \square \square-\square$)

b) DIN rail mounting (LEC $\square 6 \square \square D-\square$)

Controller (Step Data Input Type)/Step Motor (Servo/24 vDC) LECP6 Series

 Controller (Step Data Input Type)/Servo Motor (24 vDC) LECA6 Series
Wiring Example 1

Power Supply Connector: CN1

* The power supply plug is an accessory. <Applicable cable size> AWG20 ($0.5 \mathrm{~mm}^{2}$), cover diameter 2.0 mm or less
CN1 Power Supply Connector Terminal for LECP6 (PHOENIX CONTACT FK-MC0.5/5-ST-2.5)

Terminal name	Function	Details
0 V	Common supply (-)	M 24V terminal/C 24V terminal/EMG terminal/BK RLS terminal are common (-).
M 24V	Motor power supply (+)	Motor power supply (+) supplied to the controller
C 24V	Control power supply (+)	Control power supply (+) supplied to the controller
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock

CN1 Power Supply Connector Terminal for LECA6 (PHOENIX CONTACT FK-MC0.5/7-ST-2.5)

Terminal name	Function	Details
OV	Common supply (-)	M 24V terminal/C 24V terminal/EMG terminal/BK RLS terminal are common (-).
M 24V	Motor power supply (+)	Motor power supply (+) supplied to the controller
C 24V	Control power supply (+)	Control power supply (+) supplied to the controller
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock
RG +	Regenerative output 1	Regenerative output terminals for external connection
RG-	Regenerative output 2	(Not necessary to connect them in the combination with the LE series standard specifications.)

Wiring Example 2

Parallel I/O Connector: CN5

 * When you connect a PLC to the CN5 parallel I/O connector, use the I/O cable (LEC-CN5- \square).* The wiring changes depending on the type of parallel I/O (NPN or PNP).

Wiring diagram

LEC $\square 6$ N $\square \square$ - \square (NPN)

CN5		Power supply 24 VD for I/O signal
COM+	A1	
COM-	A2	
INO	A3	
IN1	A4	
IN2	A5	
IN3	A6	
IN4	A7	
IN5	A8	
SETUP	A9	
HOLD	A10	
DRIVE	A11	
RESET	A12	
SVON	A13	
OUTO	B1	Load
OUT1	B2	Load
OUT2	B3	Load
OUT3	B4	Load
OUT4	B5	Load
OUT5	B6	Load
BUSY	B7	Load
AREA	B8	Load
SETON	B9	Load
INP	B10	Load
SVRE	B11	Load
*ESTOP	B12	Load
*ALARM	B13	Load

Input Signal

Name	Details
COM +	Connects the power supply 24 V for input/output signal
COM-	Connects the power supply 0 V for input/output signal
IN0 to IN5	Step data specified bit no.
	(Input is instructed by combining IN0 to 5.)
SETUP	Instruction to return to origin
HOLD	Temporarily stops operation
DRIVE	Instruction to drive
RESET	Resets alarm and interrupts operation
SVON	Servo ON instruction

LEC \square 6P $\square \square-\square$ (PNP)

Output Signal

Name	Details
OUT0 to OUT5	Outputs the step data no. during operation
BUSY	Outputs when the actuator is moving
AREA	Outputs within the step data area output setting range
SETON	Outputs when returning to origin
INP	Outputs when target position or target force is reached (Turns on when the positioning or pushing is completed.)
SVRE	Outputs when servo is on
*ESTOP*1	OFF when EMG stop is instructed
ALARM ${ }^{ 1}$	OFF when alarm is generated

LECP6 Series

 LECA6 Series
Step Data Setting

1．Step data setting for positioning

In this setting，the actuator moves toward and stops at the target position．
The following diagram shows the setting items and operation． The setting items and set values for this operation are stated below．

© ：Need to be set

O：Need to be adjusted as required．
Step Data（Positioning）
－：Setting is not required．

Necessity	Item	Details
〇	Movement MOD	When the absolute position is required，set Absolute．When the relative position is required，set Relative．
〇	Speed	Transfer speed to the target position
\bigcirc	Position	Target position
Acceleration	Parameter which defines how rapidly the actuator reaches the speed set．The higher the set value，the faster it reaches the speed set．	
〇	Pushing force	Parameter which defines how rapidly the actuator comes to stop．The higher the set value，the quicker it stops．
-	Set 0． （If values 1 to 100 are set，the operation will be changed to the pushing operation．）	
-	Pushing speed	Setting is not required． Setting is not required．
Moving force	Max．torque during the positioning operation （No specific change is required．）	
Area 1，Area 2	Condition that turns on the AREA output signal．	
In position	Condition that turns on the INP output signal．When the actuator enters the range of［in position］，the INP output signal turns on．（It is unnecessary to change this from the initial value．）When it is necessary to output the arrival signal before the operation is completed，make the value larger．	

2．Step data setting for pushing

The actuator moves toward the pushing start position，and when it reaches that position，it starts pushing with the set force or less．
The following diagram shows the setting items and operation． The setting items and set values for this operation are stated below．

Step	Data（Pushing）	© ：Need to be set． O ：Need to be adjusted as required．
Necessity	Item	Details
\bigcirc	Movement MOD	When the absolute position is required，set Absolute．When the relative position is required，set Relative．
\bigcirc	Speed	Transfer speed to the pushing start position
\bigcirc	Position	Pushing start position
\bigcirc	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set．The higher the set value，the faster it reaches the speed set．
\bigcirc	Deceleration	Parameter which defines how rapidly the actuator comes to stop．The higher the set value，the quicker it stops．
\bigcirc	Pushing force	Pushing force ratio is defined． The setting range differs depending on the electric actuator type．Refer to the operation manual for the electric actuator．
\bigcirc	Trigger LV	Condition that turns on the INP output signal．The INP output signal turns on when the generated force exceeds the value．Trigger level should be the pushing force or less．
\bigcirc	Pushing speed	Pushing speed during pushing． When the speed is set fast，the electric actuator and workpieces might be damaged due to the impact when they hit the end，so this set value should be smaller．Refer to the operation manual for the electric actuator．
\bigcirc	Moving force	Max．torque during the positioning operation （No specific change is required．）
\bigcirc	Area 1，Area 2	Condition that turns on the AREA output signal．
\bigcirc	In position	Transfer distance during pushing．If the transferred distance exceeds the setting，it stops even if it is not pushing．If the transfer distance is exceeded，the INP output signal will not turn on．

Signal Timing

Return to Origin

* "*ALARM" and "*ESTOP" are expressed as negative-logic circuits.

* "OUT" is output when "DRIVE" is changed from ON to OFF.

Refer to the operation manual for details on the controller for the LEM series. (When power supply is applied, "DRIVE" or "RESET" is turned ON or "*ESTOP" is turned OFF, all of the "OUT" outputs are OFF.)

HOLD

[^22]

[^23]
LECP6 Series

LECA6 Series

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

Nil	Robotic cable (Flexible cable)
S	Standard cable

 (*1 Produced upon receipt of order)

Weight

Product no.	Weight [g]	Note
LE-CP-1-B-S	240	Standard cable
LE-CP-3-B-S	380	
LE-CP-5-B-S	630	
LE-CP-1-B	190	Robotic cable
LE-CP-3-B	360	
LE-CP-5-B	590	
LE-CP-8-B	1060	
LE-CP-A-B	1320	
LE-CP-B-B	1920	
LE-CP-C-B	2620	

Controller（Step Data Input Type）／Step Motor（Servo／24 vDc）LECP6 Series Controller（Step Data Input Type）／Servo Motor（24 vDC）LECA6 Series

［Robotic cable for servo motor（24 VDC）］

LE－CA－	
Cable length（L）［m］	
1	1.5
3	3
5	5
8	8＊1
A	10＊1
B	15＊1
C	20＊1

＊1 Produced upon receipt of order

Weight

Product no．	Weight［g］
LE－CA－1	220
LE－CA－3	420
LE－CA－5	700
LE－CA－8	1100
LE－CA－A	1370
LE－CA－B	2050
LE－CA－C	2720

LE－CA－\square

Controller side

Connection of shield material
［Robotic cable with lock and sensor for servo motor（24 VDC）］

$\mathbf{L E}-\mathbf{C} \boldsymbol{A}-\mathbf{1}$
Cable length（L）$[\mathrm{m}]$
$\mathbf{1}$
$\mathbf{3}$
$\mathbf{5}$
$\mathbf{8}$
\mathbf{A}
\mathbf{B}
\mathbf{C}

＊1 Produced upon receipt of order
With lock and sensor
Weight

Product no．	Weight［g］
LE－CA－1－B	270
LE－CA－3－B	520
LE－CA－5－B	870
LE－CA－8－B	1370
LE－CA－A－B	1710
LE－CA－B－B	2560
LE－CA－C－B	3400

LE－CA－\square－B

LECP6 Series

LECA6 Series

Option: I/O Cable

Cable length (L) [m]

1	1.5
3	3
5	5

Connector pin no.	Insulation color	Dot mark	Dot color
A1	Light brown	■	Black
A2	Light brown	■	Red
A3	Yellow	$\mathbf{\square}$	Black
A4	Yellow	■	Red
A5	Light green	■	Black
A6	Light green	$\mathbf{\square}$	Red
A7	Gray	$\mathbf{\square}$	Black
A8	Gray	$\mathbf{~}$	Red
A9	White	$\mathbf{\square}$	Black
A10	White	$\mathbf{~}$	Red
A11	Light brown	$\mathbf{\square}$	Black
A12	Light brown	$\mathbf{\square}$	Red
A13	Yellow	$\mathbf{\square}$	Black

Connector pin no.	Insulation color	Dot mark	$\begin{aligned} & \text { Dot } \\ & \text { color } \end{aligned}$
B1	Yellow	■ ■	Red
B2	Light green	$\square \square$	Black
B3	Light green	■ ■	Red
B4	Gray	■ ■	Black
B5	Gray	$\square \square$	Red
B6	White	$\square \square$	Black
B7	White	■ ■	Red
B8	Light brown	■■■	Black
B9	Light brown	■■■	Red
B10	Yellow	■■■	Black
B11	Yellow	■■■	Red
B12	Light green	■■■	Black
B13	Light green	■■■	Red
-	Shield		

Option: Noise Filter Set for Servo Motor (24 VDC)

LEC - NFA

Contents of the set: 2 noise filters (Manufactured by WURTH ELEKTRONIK: 74271222)

[^24]
LEC Series
 Communication Cable for Controller Setting/LEC-W2A- \square

How to Order

Compatible Controller/Driver

Step data input type	LECP6 Series/LECA6 Series
Pulse input type	LECPA Series
CC-Link direct input type	LECPMJ Series
Step Motor Controller	JXCE1/91/P1/D1/L1 Series

* When connecting to a JXCE1/91/P1/D1/L1 series product, use a conversion cable (P5062-5) as a relay.

Hardware Requirements

OS	Windows $^{\circledR 7} 7$, Windows $^{\circledR} 8.1$, Windows $^{\circledR 10} 10$
Communication interface	USB 1.1 or USB 2.0 ports
Display	1024×768 or more

* Windows ${ }^{\circledR 7}$, Windows ${ }^{\circledR 8} 8.1$ and Windows ${ }^{\circledR 10}$ are registered trademarks of Microsoft Corporation in the United States.

Screen Example

Easy mode screen example

Easy operation and simple setting

- Allowing to set and display actuator step data such as position, speed, force, etc.
- Setting of step data and test drive can be performed on the same page.
- Can be used to jog and move at a constant rate

Normal mode screen example

Detailed setting

- Step data can be set in detail.
- Signals and terminal status can be monitored.
- Parameters can be set.
- JOG and constant rate movement, return to origin, test drive and testing of forced output can be performed.

LEC Series

Teaching Box/LEC-T1

How to Order

Standard functions
 - Chinese character display
 - Stop switch is provided.

Option

- Enable switch is provided.

* The displayed language can be changed to English or Japanese.

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range $\left[{ }^{\circ} \mathbf{C}\right]$	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight [g]	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When compliance with UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Easy Mode

Function	Details
Step data	- Setting of step data
Jog	$\begin{array}{l}\text { - Jog operation } \\ \text { - Return to origin }\end{array}$
Test	$\begin{array}{l}\text { - 1 step operation } \\ \text { - Return to origin }\end{array}$
Monitor	$\begin{array}{l}\text { - Display of axis and step data no. } \\ \text { - Display of two items selected } \\ \text { from Position, Speed, Force. }\end{array}$
ALM	$\begin{array}{l}\text { - Active alarm display } \\ \text { - Alarm reset }\end{array}$
TB setting	$\begin{array}{l}\text { - Reconnection of axis (Ver. 1.**) } \\ \text { - Displayed language setting } \\ \text { (Ver. 2.**) }\end{array}$
- Setting of easy/normal mode	
- Setting step data and selection	
of items from easy mode monitor	

Menu Operations Flowchart

Menu	Data
Data	Step data no.
Monitor	Setting of two items selected below
Jog	Ver. 1.**:
Test	Position, Speed, Force, Acceleration, Deceleration
ALM	Ver. 2.**:
TB setting	Position, Speed, Pushing force, Acceleration, Deceleration, Movement MOD, Trigger LV, Pushing speed, Moving force, Area 1, Area 2, In position

Monitor Display of step no. Display of two items sele (Position, Speed, Force)
Return to origin Jog operation
Test
1 step operation
ALM
Active alarm display Alarm reset

TB setting
Reconnect (Ver. 1.**)
Japanese/English (Ver. 2.**)
Easy/Normal
Set item

Function	Details
Step data	- Step data setting
Parameter	- Parameters setting
Test	- Jog operation/Constant rate movement - Return to origin - Test drive (Specify a maximum of 5 step data and operate.) - Forced output (Forced signal output, Forced terminal output)
Monitor	- Drive monitor - Output signal monitor - Input signal monitor - Output terminal monitor - Input terminal monitor
ALM	- Active alarm display (Alarm reset) - Alarm log record display
File	- Data saving Save the step data and parameters of the controller which is being used for communication (it is possible to save four files, with one set of step data and parameters defined as one file). - Load to controller Loads the data which is saved in the teaching box to the controller which is being used for communication. - Delete the saved data. - File protection (Ver. 2.**)
TB setting	- Display setting (Easy/Normal mode) - Language setting (Japanese/English) - Backlight setting - LCD contrast setting - Beep sound setting - Max. connection axis - Distance unit (mm/inch)
Reconnect	- Reconnection of axis

Menu Operations Flowchart

Menu	Step data	흥
Step data	Step data no.	\sum_{0}
Parameter	Movement MOD	$\stackrel{\otimes}{\circ}$
Monitor	Speed	О
Test	Position	$\stackrel{\text { d }}{\substack{\text { d }}}$
ALM	Acceleration	$\stackrel{N}{\circ}$
File	Deceleration	¢
TB setting	Pushing force	$\stackrel{\text { ¢ }}{\square}$
Reconnect	Trigger LV	$\stackrel{1}{2}$
	Pushing speed	$\stackrel{\square}{\circ}$
	Moving force	

Norma
Language
Backlight

- LCD contrast

Beep
Max. connection axis
Password
Distance unit
Reconnect

Dimensions

No.	Description	Function
$\mathbf{1}$	LCD	A screen of liquid crystal display (with backlight)
$\mathbf{2}$	Ring	A ring for hanging the teaching box
$\mathbf{3}$	Stop switch	When switch is pushed in, the switch locks and stops. The lock is released when it is turned to the right.
$\mathbf{4}$	Stop switch guard	A guard for the stop switch
$\mathbf{5}$	Enable switch (Option)	Prevents unintentional operation (unexpected operation) of the jog test function. Other functions such as data change are not covered.
$\mathbf{6}$	Key switch	Switch for each input
$\mathbf{7}$	Cable	Length: 3 meters
$\mathbf{8}$	Connector	A connector connected to CN4 of the controller

Gateway Unit LEC-G Series

How to Order

\triangle Caution

[CE-compliant products] EMC compliance was tested by combining the electric actuator LE series and the controller LEC series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[UL-compliant products] When compliance with UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

*1 The DIN rail is not included. Order it separately.

CC-Link V/2 Devicellet

Branch connector LEC-CGD
Branch connectord

Terminating resistor

Communication Response Time Guideline
Response time between gateway unit and controllers depends on the number of controllers connected to the gateway unit. For response time, refer to the graph below.

This graph shows delay times between gateway unit and controllers. Fieldbus network delay time is not included.

Dimensions

Screw mounting (LEC-G $\square \square \square$)
Applicable Fieldbus protocol: CC-Link Ver. 2.0

Applicable Fieldbus protocol: PROFIBUS DP

Applicable Fieldbus protocol: DeviceNet ${ }^{\text {TM }}$

Applicable Fieldbus protocol: EtherNet/IPTM

LEC-G Series

Dimensions

DIN rail mounting (LEC-G $\square \square \square D)$

Applicable Fieldbus protocol: CC-Link Ver. 2.0

(95)

* Mountable on DIN rail (35 mm)

Applicable Fieldbus protocol: PROFIBUS DP

Applicable Fieldbus protocol: DeviceNet ${ }^{\text {TM }}$

Applicable Fieldbus protocol: EtherNet/IPTM

* Mountable on DIN rail (35 mm)

DIN rail

AXT100-DR- \square

* For \square, enter a number from the No. line in the table below. Refer to the dimension drawings above for the mounting dimensions.

L Dimensions [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

Wiring Example

* The power supply plug is an accessory <Applicable cable size> AWG20 ($0.5 \mathrm{~mm}^{2}$), cover diameter 2.0 mm or less
CN1 Power Supply Connector Terminal for LEC-G (PHOENIX CONTACT FK-MC0.5/5-ST-2.5)

Terminal name	Function	Details
EMG +	EMG signal output +	Output terminal of the emergency stop switch of the teaching box
EMG -	EMG signal output -	
24 V	Power supply + terminal	Power supply terminal of the Gateway unit (Power to the teaching box is supplied from this terminal)
OV	Power supply - terminal	
FG	FG terminal	Grounding terminal

Power supply plug for LEC-G: LEC-D-1-1

Programless Controller LECP1 Series

How to Order

The controller is sold as single unit after the compatible actuator is set.
 Confirm that the combination of the controller and actuator is correct.

* Refer to the operation manual for using the products. Please download it via our website, https://www.smcworld.com

Specifications

Basic Specifications

Item	LECP1
Compatible motor	Step motor (Servo/24 VDC)
Power supply*1	Power supply voltage: 24 VDC $\pm 10 \%{ }^{* 2}$ [Including the motor drive power, control power supply, stop, lock release]
Parallel input	6 inputs (Photo-coupler isolation)
Parallel output	6 outputs (Photo-coupler isolation)
Stop points	14 points (Position number 1 to 14(E))
Compatible encoder	Incremental A/B phase (800 pulse/rotation)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
7-segment LED display*3	1 digit, 7 -segment display (Red) Figures are expressed in hexadecimal ("10" to "15" in decimal number are expressed as "A" to "F")
Lock control	Forced-lock release terminal*4
Cable length [m]	I/O cable: 5 or less, Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range $\left[{ }^{\circ} \mathrm{C}\right]$	0 to 40 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-10 to 60 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M2]	Between the housing and SG terminal: 50 (500 VDC)
Weight [g]	130 (Screw mounting), 150 (DIN rail mounting)

*1 Do not use the power supply of "inrush current prevention type" for the controller input power supply. When compliance with UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.
*2 The power consumption changes depending on the actuator model. Refer to the each actuator's operation manual, etc., for details.
*3 " 10 " to " 15 " in decimal number are displayed as follows in the 7 -segment LED.

*4 Applicable to non-magnetizing locks

Controller Details

No.	Display	Description	Details
(1)	PWR	Power supply LED	Power supply ON/Servo ON : Green turns on Power supply ON/Servo OFF: Green flashes
(2)	ALM	Alarm LED	With alarm : Red turns on Parameter setting : Red flashes
(3)	-	Cover	Change and protection of the mode switch (Close the cover after changing switch)
(4)	-	FG	Frame ground (Tighten the screw with the washer when mounting the controller. Connect the ground wire.)
(5)	-	Mode switch	Switch the mode between manual and auto.
(6)	-	7-segment LED	Stop position, the value set by (8) and alarm information are displayed.
(7)	SET	Set button	Decide the settings or drive operation in Manual mode.
(8)	-	Position selecting switch	Assign the position to drive (1 to 14), and the origin position (15).
(9)	MANUAL	Manual forward button	Perform forward jog and inching.
(10)		Manual reverse button	Perform reverse jog and inching.
(11)	D	Forward speed switch	16 forward speeds are available.
(12)	SP	Reverse speed switch	16 reverse speeds are available.
(13)	ACCEL	Forward acceleration switch	16 forward acceleration steps are available.
(14)	ACCEL	Reverse acceleration switch	16 reverse acceleration steps are available.
(15)	CN1	Power supply connector	Connect the power supply cable.
(16)	CN2	Motor connector	Connect the motor connector.
(17)	CN3	Encoder connector	Connect the encoder connector.
(18)	CN4	I/O connector	Connect I/O cable.

How to Mount

Controller mounting shown below.

1. Mounting screw (LECP1 $\square \square-\square$)

(Installation with two M4 screws)

2. Grounding

Tighten the screw with the washer when mounting the ground wire as shown below.

* When size 25 or more of the LE series are used, the space between the controllers should be 10 mm or more.

© Caution

- M4 screws, cable with crimping terminal and tooth lock washer are not included. Be sure to carry out grounding earth in order to ensure the noise tolerance.
- Use a watchmaker's screwdriver of the size shown below when changing position switch (8) and the set value of the speed/acceleration switch (11) to (14).

[^25]

LECP1 Series

Dimensions

Screw mounting (LEC $\square 1 \square \square-\square$)

DIN rail mounting (LEC $\square 1 \square \square D-\square$)

DIN rail

AXT100-DR- \square

* For \square, enter a number from the No. line in the table below.
Refer to the dimension drawings above for the mounting dimensions.

L

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5
No.	15	16	17	18	19	20	21	22	23	24	25	26	27	28
\mathbf{L}	198	210.5	223	235.5	248	260.5	273	285.5	298	310.5	323	335.5	348	360.5
No.	29	30	31	32	33	34	35	36	37	38	39	40		
\mathbf{L}	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5		

DIN rail mounting adapter

LEC-1-D0 (with 2 mounting screws)

Wiring Example 1

Power Supply Connector: CN1 * When you connect a CN1 power supply connector, use the power supply cable (LEC-CK1-1).

CN1 Power Supply Connector Terminal for LECP1

Terminal name	Cable color	Function	Details
0V	Blue	Common supply (-)	M 24V terminal/C 24V terminal/BK RLS terminal are common (-).
M 24V	White	Motor power supply (+)	Motor power supply (+) supplied to the controller
C 24V	Brown	Control power supply (+)	Control power supply (+) supplied to the controller
BK RLS	Black	Lock release (+)	Input (+) for releasing the lock

Power supply cable for LECP1 (LEC-CK1-1)

Wiring Example 2

Parallel I/O Connector: CN4 * When you connect a PLC to the CN4 parallel I/O connector, use the I/O cable (LEC-CK4-■).

-NPN

		Power supply 24 VDC for I/O signal
CN4		
COM+	1	
COM-	2	
OUT0	3	Load
OUT1	4	Load
OUT2	5	Load
OUT3	6	Load
BUSY	7	Load
ALARM	8	Load
INO	9	
IN1	10	
IN2	11	
IN3	12	
RESET	13	
STOP	14	

Input Signal

Name	Details			
COM+	Connects the power supply 24 V for input/output signal			
COM-	Connects the power supply 0 V for input/output signal			
INO to IN3	- Instruction to drive (input as a combination of INO to IN3) - Instruction to return to origin (INO to IN3 all ON simultaneously) Example - (instruction to drive for position no. 5)			
	IN3	IN2	IN1	IN0
	OFF	ON	OFF	ON
RESET	Alarm reset and operation interruption During operation: deceleration stop from position at which signal is input (servo ON maintained) While alarm is active: alarm reset			
STOP	Instruction to stop (after maximum deceleration stop, servo OFF)			

Input Signal [INO - IN3] Position Number Chart O: OFF ©: ON

Position number	IN3	IN2	IN1	INO
1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10 (A)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11 (B)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12 (C)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
13 (D)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14 (E)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Return to origin	\bigcirc	\bigcirc	\bigcirc	\bigcirc

-PNP

Output Signal

Name	Details			
OUT0 to OUT3	Turns on when the positioning or pushing is completed. (Output is instructed in the combination of OUT0 to 3.) Example - (operation complete for position no. 3)			
	OUT3	OUT2	OUT1	OUT0
OFF	OFF	ON	ON	
BUSY	Outputs when the actuator is moving			
ALARM	Not output when alarm is active or servo OFF			

*1 Signal of negative-logic circuit (N.C.)

Output Signal [OUTO - OUT3] Position Number Chart O: OFF ©: ON

Position number	OUT3	OUT2	OUT1	OUTO
1	0	0	0	\bullet
2	0	0	\bullet	0
3	0	0	\bullet	\bullet
4	0	\bullet	0	0
5	0	\bullet	0	\bullet
6	0	\bullet	\bullet	0
7	0	\bullet	\bullet	\bullet
8	\bullet	0	0	0
9	\bullet	0	0	\bullet
$10(\mathrm{~A})$	\bullet	0	\bullet	0
$11(\mathrm{~B})$	\bullet	0	\bullet	\bullet
$12(\mathrm{C})$	\bullet	\bullet	0	0
$13(\mathrm{D})$	\bullet	\bullet	0	\bullet
$14(\mathrm{E})$	\bullet	\bullet	\bullet	0
Return to origin	\bullet	\bullet	\bullet	\bullet

LECP1 Series

Signal Timing

(1) Return to Origin

* "*ALARM" is expressed as a negative-logic circuit.

(2) Positioning Operation

(3) Cut-off Stop (Reset Stop)

(4) Stop by the STOP Signal

(5) Alarm Reset

* "*ALARM" is expressed as a negative-logic circuit.

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

LE - CP - $\mathbf{1}$
Cable length (L) $[\mathrm{m}]$

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	$8^{* 1}$
\mathbf{A}	10^{*+1}
\mathbf{B}	15^{*+1}
\mathbf{C}	$20^{* 1}$

*1 Produced upon receipt of order (Robotic cable only)

Cable type

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

Weight

Product no.	Weight [g]	Note
LE-CP-1-S	190	Standard cable
LE-CP-3-S	280	
LE-CP-5-S	460	
LE-CP-1	140	Robotic cable
LE-CP-3	260	
LE-CP-5	420	
LE-CP-8	790	
LE-CP-A	980	
LE-CP-B	1460	
LE-CP-C	1940	

LE-CP- ${ }_{A}^{8} \mathrm{~B}$ /Cable length: $8 \mathrm{~m}, 10 \mathrm{~m}, 15 \mathrm{~m}, \mathbf{2 0} \mathbf{~ m}$
(*1 Produced upon receipt of order)

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

LE - CP - $\mathbf{1}$
Cable length (L) $[\mathrm{m}]$
$\mathbf{1}$
$\mathbf{3}$
$\mathbf{5}$
$\mathbf{8}$
\mathbf{A}
\mathbf{B}
\mathbf{C}

*1 Produced upon receipt of order (Robotic cable only) With lock and sensor ${ }^{\text {© }}$

Cable type

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

Weight

Product no.	Weight [g]	Note
LE-CP-1-B-S	240	
LE-CP-3-B-S	380	
LE-CP-5-B-S	630	
LE-CP-1-B	190	
LE-CP-3-B	360	
LE-CP-5-B	590	Robotic cable
LE-CP-8-B	1060	
LE-CP-A-B	1320	
LE-CP-B-B	1920	
LE-CP-C-B	2620	

LE-CP- ${ }_{A}^{8} \mathrm{~B}$ /Cable length: $\mathbf{8} \mathbf{m}, \mathbf{1 0 m} \mathbf{m}, \mathbf{1 5} \mathbf{~ m}, \mathbf{2 0} \mathrm{m}$
(*1 Produced upon receipt of order)

LECP1 Series

Options

[Power supply cable]

LEC-CK1-1

Function	
Common supply (-)	
	Cotor power supply (+)

Terminal name	Covered color	Function
OV	Blue	Common supply (-)
M 24V	White	Motor power supply (+)
C 24V	Brown	Control power supply (+)
BK RLS	Black	Lock release (+)

[I/O cable]

LEC - CKA - Cable length (L) [m] | 1 | 1.5 |
| :---: | :---: |
| 3 | 3 |
| 5 | 5 |

Terminal no.	Insulation color	Dot mark	Dot color	Function
1	Light brown	\square	Black	COM +
2	Light brown	\square	Red	COM-
3	Yellow	\square	Black	OUT0
4	Yellow	\square	Red	OUT1
5	Light green	\square	Black	OUT2
6	Light green	\square	Red	OUT3
7	Gray	\square	Black	BUSY
8	Gray	\square	Red	ALARM
9	White	\square	Black	INO
10	White	\square	Red	IN1
11	Light brown	■■	Black	IN2
12	Light brown	■ ■	Red	IN3
13	Yellow	■■	Black	RESET
14	Yellow	■■	Red	STOP

* Conductor size: AWG26

Weight

Product no.	Weight [g]
LEC-CK4-1	100
LEC-CK4-3	200
LEC-CK4-5	330

[^26]
Step Motor Driver LECPA Series

How to Order

\triangle Caution

[CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LE series and the LECPA series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
(2) For the LECPA series (step motor driver), EMC compliance was tested by installing a noise filter set (LEC-NFA).
Refer to page 218 for the noise filter set. Refer to the LECPA Operation Manual for installation.

[UL-compliant products]

When compliance with UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.

LECP AN
Driver type
Puse inumbe (MPN)

AN	Pulse input type (NPN)
AP	Pulse input type (PNP)

I/O cable length [m]

Nil	None
$\mathbf{1}$	1.5
$\mathbf{3}$	$3^{* 1}$
$\mathbf{5}$	$5^{* 1}$

*1 Pulse input usable only with differential. Only 1.5 m cables usable with open collector.

- Driver mounting

Nil	Screw mounting
$\mathbf{D}^{* 1}$	DIN rail

*1 The DIN rail is not included. Order it separately.

Actuator part number ${ }^{\circ}$
Without cable specifications and actuator options Example: Enter "LEY16B-100"
for the LEY16B-100B-R16N1.
BC
Blank controller*1
*1 Requires dedicated software (LEC-BCW)

* When controller equipped type is selected when ordering the LE series, you do not need to order this driver. * When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- \square) separately.

The driver is sold as single unit after

 the compatible actuator is set.Confirm that the combination of the driver and actuator is correct.
<Check the following before use.>
(1) Check the actuator label for the model number. This number should match that of the driver.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website, https://www.smcworld.com

Specifications

Precautions for blank controllers (LECPA $\square \square-\mathrm{BC}$)

A blank controller is a controller to which the customer can write the data of the actuator it is to be combined and used with. Use the dedicated software (LECBCW) for data writing.

- Please download the dedicated software (LEC-BCW) via our website.
- Order the communication cable for controller setting (LEC-W2A-C) separately to use this software.

SMC website
https://www.smcworld.com

LECPA Series

How to Mount
a) Screw mounting (LECPA $\square \square-\square$) (Installation with two M4 screws)

b) DIN rail mounting (LECPA $\square \square \mathrm{D}-\square$) (Installation with the DIN rail)

DIN rail is locked.

Hook the driver on the DIN rail and press the lever of section \mathbf{A} in the arrow direction to lock it.

* The space between the drivers should be 10 mm or more.

DIN rail

AXT100-DR- \square

* For \square, enter a number from the No. line in the table below.

Refer to the dimension drawings on page 214 for the mounting dimensions.

L Dimensions [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

DIN rail mounting adapter

LEC-2-D0 (with 2 mounting screws)

This should be used when the DIN rail mounting adapter is mounted onto a screw mounting type driver afterward.

Dimensions

a) Screw mounting (LECPA $\square \square-\square$)

b) DIN rail mounting (LECPA $\square \square \mathrm{D}-\square$)

Wiring Example 1

Power Supply Connector: CN1
The power supply plug is an accessory.
<Applicable cable size> AWG20 ($0.5 \mathrm{~mm}^{2}$), cover diameter 2.0 mm or less
CN1 Power Supply Connector Terminal for LECPA (PHOENIX CONTACT FK-MC0.5/5-ST-2.5)

Terminal name	Function	Details
0 V	Common supply (-)	M 24 V terminal/C 24V terminal/EMG terminal/BK RLS terminal are common (-).
M 24V	Motor power supply (+)	Motor power supply (+) supplied to the driver
C 24V	Control power supply (+)	Control power supply (+) supplied to the driver
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock

Power supply plug for LECPA: LEC-D-1-1

LECPA Series

Wiring Example 2

Parallel I/O Connector: CN5 * When you connect a PLC to the CN5 parallel I/O connector, use the I/O cable (LEC-CL5- \square).

LECPAN $\square \square-\square$ (NPN)

*1 For pulse signal wiring method, refer to "Pulse Signal Wiring Details".
*2 Output when the power supply of the driver is ON. (N.C.)

Input Signal

Name	Details
COM +	Connects the power supply 24 V for input/output signal
COM-	Connects the power supply 0 V for input/output signal
SETUP	Instruction to return to origin
RESET	Alarm reset
SVON	Servo ON instruction
CLR	Deviation reset
TL	Instruction to pushing operation

Pulse Signal Wiring Details

- Pulse signal output of positioning unit is differential output

- Pulse signal output of positioning unit is open collector output

Pulse signal power supply

*1 Connect the current limiting resistor R in series to correspond to the pulse signal voltage.

Pulse signal power supply voltage	Current limiting resistor R speciications	Current limiting resistor part no.
$24 \mathrm{VDC} \pm 10 \%$	$3.3 \mathrm{k} \Omega \pm 5 \%$ $(0.5 \mathrm{~W}$ or more)	LEC-PA-R-332
$5 \mathrm{VDC} \pm 5 \%$	$390 \Omega \pm 5 \%$ $(0.1 \mathrm{~W}$ or more $)$	LEC-PA-R-391

Signal Timing

Return to Origin

* "*ALARM" and "*ESTOP" are expressed as negative-logic circuits.

Positioning Operation

Alarm Reset

[^27]
Pushing Operation

[^28]
LECPA Series

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]
$\mathbf{L E}-\mathbf{C P}-\mathbf{1}$
Cable length $(\mathrm{L})[\mathrm{m}]$

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	$8^{* 1}$
\mathbf{A}	10^{*+1}
\mathbf{B}	15^{*+1}
\mathbf{C}	20^{*-1}

*1 Produced upon receipt of order (Robotic cable only)

Cable type

Nil	Robotic cable (Flexible cable)
S	Standard cable

Weight

Product no.	Weight [g]	Note
LE-CP-1-S	190	Standard cable
LE-CP-3-S	280	
LE-CP-5-S	460	
LE-CP-1	140	Robotic cable
LE-CP-3	260	
LE-CP-5	420	
LE-CP-8	790	
LE-CP-A	980	
LE-CP-B	1460	
LE-CP-C	1940	

LE-CP- ${ }_{5}^{\frac{1}{5}} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

($* 1$ Produced upon receipt of order)

Signal	Connector A terminal no.		Cable color	Connector C terminal no.
A	B-1		Brown	2
$\overline{\mathrm{A}}$	A-1		Red	1
B	B-2		Orange	6
\bar{B}	A-2		Yellow	5
COM-A/COM	B-3		Green	3
COM-B/-	A-3		Blue	4
,		Shield	Cable color	Connector D terminal no.
Vcc	B-4	i'	Brown	12
GND	A-4	$1 \times \infty$	Black	13
$\overline{\mathrm{A}}$	B-5	1	Red	7
A	A-5	1	Black	6
\bar{B}	B-6	+	Orange	9
B	A-6		Black	8

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

LE - CP -
Cable length (L) [m]
$\mathbf{\| 1}$
$\mathbf{3}$
$\mathbf{5}$
$\mathbf{8}$
A
\mathbf{B}
\mathbf{C}

Produced upon receipt of With lock and sensor

Cable type

Standard cable

Weight

Product no.	Weight [g]	Note
LE-CP-1-B-S	240	Standard cable
LE-CP-3-B-S	380	
LE-CP-5-B-S	630	
LE-CP-1-B	190	
LE-CP-3-B	360	
LE-CP-5-B	590	
LE-CP-8-B	Robotic cable	
LE-CP-A-B		
LE-CP-B-B		
LE-CP-C-B	1920	

LE-CP- ${ }_{5}^{13} / C a b l e ~ l e n g t h: ~ 1.5 ~ m, ~ 3 ~ m, ~ 5 ~ m ~$
LE-CP- ${ }_{A}^{8} \mathrm{~B} /$ Cable length: $\mathbf{8} \mathrm{m}, \mathbf{1 0 ~ m}, \mathbf{1 5 ~ m}, \mathbf{2 0 m}$

(*1 Produced upon receipt of order)

*1 Pulse input usable only with differential. Only 1.5 m cables usable with open collector

[Noise filter set]

Step Motor Driver (Pulse Input Type)

LEC-NFA

Contents of the set: 2 noise filters
(Manufactured by WURTH ELEKTRONIK: 74271222)

[^29]| Pin
 no. | Insulation
 color | Dot
 mark | Dot
 color |
| :---: | :---: | :---: | :---: |
| 1 | Light brown | ■ | Black |
| 2 | Light brown | ■ | Red |
| 3 | Yellow | ■ | Black |
| 4 | Yellow | ■ | Red |
| 5 | Light green | ■ | Black |
| 6 | Light green | ■ | Red |
| 7 | Gray | ■ | Black |
| 8 | Gray | ■ | Red |
| 9 | White | ■ | Black |
| 10 | White | $\mathbf{\square}$ | Red |
| 11 | Light brown | $\boxed{\square}$ | Black |

Pin no.	Insulation color	Dot mark	Dot color
12	Light brown	■	Red
13	Yellow	■	Black
14	Yellow	■!	Red
15	Light green	■	Black
16	Light green	■	Red
17	Gray	■	Black
18	Gray	■	Red
19	White	■	Black
20	White	■	Red
$\begin{gathered} \text { Pound temin } \\ 0.5-5 \end{gathered}$	Green		

Weight

Product no.	Weight [g]
LEC-CL5-1	190
LEC-CL5-3	370
LEC-CL5-5	610

[Current limiting resistor]

This optional resistor (LEC-PA-R- \square) is used when the pulse signal output of the positioning unit is open collector output.

\section*{LEC-PA-R- \square
 Current limiting resistor ${ }^{\circ}$
 | Symbol | Resistance | Pulse signal
 power supply voltage |
| :---: | :---: | :---: |
| 332 | $3.3 \mathrm{k} \Omega \pm 5 \%$ | 24 VDC $\pm 10 \%$ |
| 391 | $390 \Omega \pm 5 \%$ | 5 VDC $\pm 5 \%$ |}

* Select a current limiting resistor that corresponds to the pulse signal power supply voltage.
* For the LEC-PA-R- \square, two pieces are shipped as a set.
* For pulse signal wiring details, refer to page 215.

LEC Series

Communication Cable for Controller Setting/LEC-W2A- \square

How to Order

LEC-W2- ${\underset{T}{\text { Uss cane }}}^{\text {U }}$

Compatible Controller/Driver

Step data input type	LECP6 Series/LECA6 Series
Pulse input type	LECPA Series
CC-Link direct input type	LECPMJ Series
Step Motor Controller	JXCE1/91/P1/D1/L1 Series

* When connecting to a JXCE1/91/P1/D1/L1 series product, use a conversion cable (P5062-5) as a relay.

Hardware Requirements

OS	Windows $^{\circledR 7} 7$, Windows ${ }^{\circledR} 8.1$, Windows ${ }^{\circledR 10}$
Communication interface	USB 1.1 or USB 2.0 ports
Display	1024×768 or more

* Windows ${ }^{\circledR 7}$, Windows ${ }^{\circledR 8} 8.1$ and Windows ${ }^{\circledR} 10$ are registered trademarks of Microsoft Corporation in the United States.

Screen Example

Easy mode screen example

Easy operation and simple setting

- Allowing to set and display actuator step data such as position, speed, force, etc.
- Setting of step data and test drive can be performed on the same page.
- Can be used to jog and move at a constant rate

Normal mode screen example

Detailed setting

- Step data can be set in detail.
- Signals and terminal status can be monitored.
- Parameters can be set.
- JOG and constant rate movement, return to origin, test drive and testing of forced output can be performed.

LEC Series

 Teaching Box/LEC-T1
How to Order

Standard functions
 - Chinese character display
 - Stop switch is provided.

Option

- Enable switch is provided.

-Stop switch
G Equipped with stop switch
* The displayed language can be changed to English or Japanese.

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range [${ }^{\circ} \mathbf{C}$]	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight [g]	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When compliance with UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.

Easy Mode

Function	Details
Step data	- Setting of step data
Jog	- Jog operation - Return to origin
Test	- 1 step operation*1 - Return to origin
Monitor	- Display of axis and step data no. - Display of two items selected from Position, Speed, Force.
ALM	- Active alarm display - Alarm reset
TB setting	- Reconnection of axis (Ver. 1.**) - Displayed language setting (Ver. 2.**)
- Setting of easy/normal mode - Setting step data and selection of items from easy mode monitor	

Menu Operations Flowchart

Menu	Data
Data	Step data no.
Monitor	Setting of two items selected below
Jog	Ver. 1.**:
Test	Position, Speed, Force, Acceleration, Deceleration
ALM	Ver. 2.**:
TB setting	Position, Speed, Pushing force, Acceleration, Deceleration, Movement MOD,

$$
0-1--\infty
$$

SSMC

Normal Mode

Function	Details
Step data	- Step data setting
Parameter	- Parameters setting
Test	- Jog operation/Constant rate movement - Return to origin - Test drive*1 (Specify a maximum of 5 step data and operate.) - Forced output (Forced signal output, Forced terminal output)*2
Monitor	- Drive monitor - Output signal monitor*2 - Input signal monitor*2 - Output terminal monitor - Input terminal monitor
ALM	- Active alarm display (Alarm reset) - Alarm log record display
File	- Data saving Save the step data and parameters of the driver which is being used for communication (it is possible to save four files, with one set of step data and parameters defined as one file). - Load to driver Loads the data which is saved in the teaching box to the driver which is being used for communication. - Delete the saved data. - File protection (Ver. 2.**)
TB setting	- Display setting (Easy/Normal mode) - Language setting (Japanese/English) - Backlight setting - LCD contrast setting - Beep sound setting - Max. connection axis - Distance unit (mm/inch)
Reconnect	- Reconnection of axis

Menu Operations Flowchart

Menu
Step data
Parameter
Monitor
Test
ALM
File
TB setting
Reconnect

*1 Not compatible with the LECPA
*2 The following signals are compatible with
LECPA with TB Ver. 2.10
or newer.
Input: CLR, TL
Output: TLOUT

Dimensions

No.	Description	Function
$\mathbf{1}$	LCD	A screen of liquid crystal display (with backlight)
$\mathbf{2}$	Ring	A ring for hanging the teaching box
$\mathbf{3}$	Stop switch	When switch is pushed in, the switch locks and stops. The lock is released when it is turned to the right.
$\mathbf{4}$	Stop switch guard	A guard for the stop switch
$\mathbf{5}$	Enable switch (Option)	Prevents unintentional operation (unexpected operation) of the jog test function. Other functions such as data change are not covered.
$\mathbf{6}$	Key switch	Switch for each input
$\mathbf{7}$	Cable	Length: 3 meters
$\mathbf{8}$	Connector	A connector connected to CN4 of the driver

CC-Link Direct Input Type Step Motor Controller LECPMJ Series
 ${ }^{c} \mathbf{N H}_{\text {us }}$

How to Order

Communication plug connectior

* Part number that is used when ordering the communication plug connector individually

Controller type

Connector type	
S	Straight type
T	T-branch type

Straight type LEC-CMJ-S

T-branch type LEC-CMJ-T

The controller is sold as single unit after the compatible actuator is set.
Confirm that the combination of the controller and actuator is correct.
(1) Check the actuator label for the model number. This number should match that of the controller.

A blank controller is a controller to which the customer can write the data of the actuator it is to be combined and used with. Use the dedicated software (LEC-BCW) for data writing.

- Please download the dedicated software (LEC-BCW) via our website.
- Order the communication cable for controller setting (LEC-W2A-C) separately to use this software.

SMC website: https://www.smcworld.com

LECPMJ Series

Specifications

Item			LECPMJ				
Compatible motor			Step motor (Servo/24 VDC)				
Power supply*1			Power voltage: 24 VDC $\pm 10 \%$ *2				
Compatible encoder			Incremental A/B phase (800 pulse/rotation)				
	Fieldbus		CC-Link Ver. 1.10				
	Communication speed [bps]		$156 \mathrm{k} / 625 \mathrm{k} / 2.5 \mathrm{M} / 5 \mathrm{M} / 10 \mathrm{M}$				
	Communication method		Broadcast polling				
	Station type		Remote device station				
	I/O occupation area		1 station $\binom{$ Input 32 points $/ 4$ words }{ Output 32 points $/ 4$ words }		$\begin{gathered} 2 \text { stations } \\ \binom{\text { Input } 64 \text { points/8 words }}{\text { Output } 64 \text { points } / 8 \text { words }} \end{gathered}$	$\begin{gathered} 4 \text { stations } \\ \binom{\text { Input } 128 \text { points/16 words }}{\text { Output } 128 \text { points/16 words }} \end{gathered}$	
	Applicable communication cable		CC-Link Ver. 1.10 compliant cable (Shielded 3-core twisted pair cable)*3				
	Maximum cable length	Communication speed [bps]	156 k	625 k	2.5 M	5 M	10 M
		Total cable length [m]	1200	900	400	160	100
Serial communication			RS485 (Modbus protocol)				
Memory			EEPROM				
LED indicator			PWR, ALM, L ERR, L RUN				
Lock control			Forced-lock release terminal*4				
Cable length [m]			Actuator cable: 20 or less				
Cooling system			Natural air cooling				
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 40 (No freezing)				
Operating humidity range [\%RH]			90 or less (No condensation)				
Storage temperature range [${ }^{\circ} \mathrm{C}$]			-10 to 60 (No freezing)				
Storage humidity range [\%RH]			90 or less (No condensation)				
Insulation resistance [M Ω]			Between all of external terminals and the case$50 \text { (500 VDC) }$				
Weight [g]		Body	170 (Screw mounting), 190 (DIN rail mounting)				
		Communication plug connector	10 (Straight type), 20 (T-branch type)				

*1 Do not use the power supply of "inrush current prevention type" for the controller power supply.
When compliance with UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.
*2 The power consumption changes depending on the actuator model. Refer to the specifications of actuator for more details.
*3 If the system comprises of both CC-Link Ver. 1.00 and Ver. 1.10 compliant cables, Ver. 1.00 specifications are applied to the maximum communication cable length and the cable length between stations.
*4 Applicable to non-magnetizing locks

Mode explanation

Mode type	Description
Single numeric parameter	Can define numerical data in the Movement MOD and another item in the step data directly from the PLC when starting operation by specifying a registered step data No.
Half numeric parameters	Can define numerical data in the Movement MOD, Speed, Position, Acceleration/Pushing force, Pushing speed, or Deceleration/ Trigger LV in the step data directly from the PLC when starting operation by specifying a registered step data No.
Full numeric parameters	Can define numerical data in all step data items, Movement MOD, Speed, Position, Acceleration, Pushing speed, Pushing force, Deceleration, Trigger LV, Moving force, Area 1, Area 2, and In position, directly from the PLC to start operation

Function that can be executed in each mode

Mode setting [Number of occupied stations]*5	Single numeric parameter [1]	Half numeric parameters [2]	Full numeric parameters [4]
Step no. defining operation	\bigcirc		
Numerical data defining operation	\bigcirc		
Number of definable numerical data items	1	6	12
Monitoring of position/speed	\bigcirc		
Step data editing	○*6		
Max. number of connectable controllers*7	42	32	16

*5 The modes can be set by registering the number of occupied stations with basic parameter "Option setting 1" of the controller.
*6 It is possible to edit it from teaching box/controller setting software for "Single numeric parameter." It is possible to edit it from teaching box/controller setting software and PLC (CC-Link) for "Half numeric parameters" and "Full numeric parameters."
*7 Maximum number of units specified in CC-Link communication specifications

Step Motor Controller (CC-Link Direct Input Type)

Specifications

Modifiable step data item in each mode

- Numerical data modifiable items

Mode setting	Step data item											
	Movement MOD	Speed	Position	Acceleration	Pushing force	Pushing speed	Deceleration	Trigger LV	Moving force	Area 1	Area 2	In position
Single numeric parameter	\bigcirc					Only one item can be changed from 11 items, ranging from Speed to In position.						
Half numeric parameters	\bigcirc	\bigcirc	O	Only one item ca Acceleration	changed from hing force.	\bigcirc	Only one item ca Deceleratio	be changed from /Trigger LV.				
Full numeric parameters	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

* Step data items, except items that have been changed, reference data registered in the controller.
* Refer to the LECPMJ operation manual for details of the step data items.

Operation example: Single numeric parameter

[Step data registered in LECPMJ]

LECPMJ Series

Dimensions

DIN rail

AXT100-DR- \square

* For \square, enter a number from the No. line in the table below. Refer to the dimension drawings above for the mounting dimensions.

L Dimensions [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

Wiring Example

Power Supply Connector: CN1

* The power supply plug is an accessory.
<Applicable cable size> AWG20 ($0.5 \mathrm{~mm}^{2}$), cover diameter 2.0 mm or less
CN1 Power Supply Connector Terminal for LECPMJ (PHOENIX CONTACT FK-MC0.5/5-ST-2.5)

Terminal name	Function	Details
0 V	Common supply (-)	M 24V terminal/C 24V terminal/EMG terminal/BK RLS terminal are common (-).
M 24V	Motor power supply (+)	Motor power supply (+) supplied to the driver
C 24V	Control power supply (+)	Control power supply (+) supplied to the driver
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock

Power supply plug for LECPMJ: LEC-D-1-1

Step Motor Controller (CC-Link Direct Input Type)

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

LE - CP - $\mathbf{1}$
Cable length (L) [m]

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	$8^{* 1}$
A	10^{*+1}
B	$15^{* 1}$
\mathbf{C}	$20^{* 1}$

*1 Produced upon receipt of order (Robotic cable only)

Cable type

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

Weight

Product no.	Weight [g]	Note
LE-CP-1-S	190	Standard cable
LE-CP-3-S	280	
LE-CP-5-S	460	
LE-CP-1	140	Robotic cable
LE-CP-3	260	
LE-CP-5	420	
LE-CP-8	790	
LE-CP-A	980	
LE-CP-B	1460	
LE-CP-C	1940	

LE-CP- ${ }_{5}^{\frac{1}{5}}$ /Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

LE-CP- ${ }_{A}^{8} \mathrm{~B} /$ Cable length: $\mathbf{8} \mathbf{m}, \mathbf{1 0 ~ m , 1 5 ~ m , ~} \mathbf{2 0 ~ m}$
(*1 Produced upon receipt of order)

Driver side
Connector C $\stackrel{(14.2)}{\sim}$ (Terminal no.)

\qquad
Con

Signal	Connector A terminal no.		Cable color	Connector C terminal no.
A	B-1		Brown	2
$\overline{\mathrm{A}}$	A-1		Red	1
B	B-2		Orange	6
\bar{B}	A-2		Yellow	5
COM-A/COM	B-3		Green	3
COM-B/-	A-3		Blue	4
		Shield	Cable color	Connector D terminal no.
Vcc	B-4	i'	Brown	12
GND	A-4		Black	13
$\overline{\mathrm{A}}$	B-5	$1 \times$ -	Red	7
A	A-5	,	Black	6
\bar{B}	B-6	1	Orange	9
B	A-6		Black	8

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

LE-CP-1 Cable length (L) [m]	
1	1.5
3	3
5	5
8	$8^{* 1}$
A	10*1
B	15*1
C	20*1
*1 Produced upon receipt of order (Robotic cable only)	
With lock and sensor ${ }^{\text {d }}$	
	Cabl

LE-CP- ${ }_{5}^{1} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

LE-CP- ${ }_{A}^{8} \mathrm{~B}$ /Cable length: $\mathbf{8 m , 1 0 ~ m , 1 5 ~ m , ~} \mathbf{2 0 m}$
(*1 Produced upon receipt of order)

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

Weight

Product no.	Weight [g]	Note
LE-CP-1-B-S	240	Standard cable
LE-CP-3-B-S	380	
LE-CP-5-B-S	630	
LE-CP-1-B	190	
LE-CP-3-B	360	
LE-CP-5-B	590	Robotic cable
LE-CP-8-B	1060	
LE-CP-A-B	1320	
LE-CP-B-B	1920	
LE-CP-C-B	2620	

LEC Series

Communication Cable for Controller Setting/LEC-W2A- \square

How to Order

LEC-W2A- $\underset{\substack{\text { Communication } \\ \text { cable }}}{\mathbf{C}}$
LEC-W2- $\mathrm{T}_{\text {Usb cable }}$

Compatible Controller/Driver

Step data input type	LECP6 Series/LECA6 Series
Pulse input type	LECPA Series
CC-Link direct input type	LECPMJ Series
Step Motor Controller	JXCE1/91/P1/D1/L1 Series

* When connecting to a JXCE1/91/P1/D1/L1 series product, use a conversion cable (P5062-5) as a relay.

Hardware Requirements

OS	Windows $^{\circledR} 7$, Windows $^{\circledR} 8.1$, Windows ${ }^{\circledR} 10$
Communication interface	USB 1.1 or USB 2.0 ports
Display	1024×768 or more

* Windows ${ }^{\circledR 7}$, Windows ${ }^{\circledR 8} 8.1$ and Windows ${ }^{\circledR 10}$ are registered trademarks of Microsoft Corporation in the United States.

Screen Example

Easy mode screen example

Easy operation and simple setting

- Allowing to set and display actuator step data such as position, speed, force, etc.
- Setting of step data and test drive can be performed on the same page.
- Can be used to jog and move at a constant rate

Normal mode screen example

Detailed setting

- Step data can be set in detail.
- Signals and terminal status can be monitored.
- Parameters can be set.
- JOG and constant rate movement, return to origin, test drive and testing of forced output can be performed.

LEC Series

 Teaching Box/LEC-T1
How to Order

Standard functions
 - Chinese character display
 - Stop switch is provided.

Option

- Enable switch is provided.

-Stop switch
G Equipped with stop switch
* The displayed language can be changed to English or Japanese.

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range [${ }^{\circ} \mathbf{C}$]	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight [g]	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When compliance with UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Easy Mode

Function	Details
Step data	- Setting of step data
Jog	- Jog operation - Return to origin
Test	- 1 step operation*1 - Return to origin
Monitor	- Display of axis and step data no. - Display of two items selected from Position, Speed, Force.
ALM	- Active alarm display - Alarm reset
TB setting	- Reconnection of axis (Ver. 1.**) - Displayed language setting (Ver. 2.**)
- Setting of easy/normal mode - Setting step data and selection of items from easy mode monitor	

Menu Operations Flowchart

Menu	Data
Data	Step data no.
Monitor	Setting of two items selected below
Jog	Ver. 1.**:
Test	Position, Speed, Force, Acceleration, Deceleration
ALM	Ver. 2.**:
TB setting	Position, Speed, Pushing force, Acceleration, Deceleration, Movement MOD,

$$
4-4-\ln
$$

SSMC

Normal Mode

Function	Details
Step data	- Step data setting
Parameter	- Parameters setting
Test	- Jog operation/Constant rate movement - Return to origin - Test drive*1 (Specify a maximum of 5 step data and operate.) - Forced output (Forced signal output, Forced terminal output)*2
Monitor	- Drive monitor - Output signal monitor*2 - Input signal monitor*2 - Output terminal monitor - Input terminal monitor
ALM	- Active alarm display (Alarm reset) - Alarm log record display
File	- Data saving Save the step data and parameters of the driver which is being used for communication (it is possible to save four files, with one set of step data and parameters defined as one file). - Load to driver Loads the data which is saved in the teaching box to the driver which is being used for communication. - Delete the saved data. - File protection (Ver. 2.**)
TB setting	- Display setting (Easy/Normal mode) - Language setting (Japanese/English) - Backlight setting - LCD contrast setting - Beep sound setting - Max. connection axis - Distance unit (mm/inch)
Reconnect	- Reconnection of axis

Menu Operations Flowchart

Menu
Step data
Parameter
Monitor
Test
ALM
File
TB setting
Reconnect

*1 Not compatible with the LECPA
*2 The following signals are compatible with
LECPA with TB Ver. 2.10
or newer.
Input: CLR, TL
Output: TLOUT

Dimensions

No.	Description	Function
$\mathbf{1}$	LCD	A screen of liquid crystal display (with backlight)
$\mathbf{2}$	Ring	A ring for hanging the teaching box
$\mathbf{3}$	Stop switch	When switch is pushed in, the switch locks and stops. The lock is released when it is turned to the right.
$\mathbf{4}$	Stop switch guard	A guard for the stop switch
$\mathbf{5}$	Enable switch (Option)	Prevents unintentional operation (unexpected operation) of the jog test function. Other functions such as data change are not covered.
$\mathbf{6}$	Key switch	Switch for each input
$\mathbf{7}$	Cable	Length: 3 meters
$\mathbf{8}$	Connector	A connector connected to CN4 of the driver

Step Motor Controller JXCE1/91/P1/D1/L1 Series (ϵ 。94vs

How to Order

The controller is sold as single unit after the compatible actuator is set.
Confirm that the combination of the controller and actuator is correct.
(1) Check the actuator label for the model number. This number should match that of the controller.

* Refer to the operation manual for using the products. Please download it via our website, https://www.smcworld.com

Precautions for blank controllers (JXC $\square 1 \square \square-\mathrm{BC}$)

A blank controller is a controller to which the customer can write the data of the actuator it is to be combined and used with. Use the dedicated software (JXC-BCW) for data writing.

- Please download the dedicated software (JXC-BCW) via our website.
- Order the controller setting kit (JXC-W2) separately to use this software.

SMC website: https://www.smcworld.com

JXCE1/91/P1/D1/L1 Series

Specifications

Model			JXCE1	JXC91	JXCP1	JXCD1	JXCL1
Network			EtherCAT ${ }^{\text {® }}$	EtherNet/IP ${ }^{\text {TM }}$	PROFINET	DeviceNet ${ }^{\text {™ }}$	IO-Link
Compatible motor			Step motor (Servo/24 VDC)				
Power supply			Power voltage: 24 VDC $\pm 10 \%$				
Current consumption (Controller)			200 mA or less	130 mA or less	200 mA or less	100 mA or less	100 mA or less
Compatible encoder			Incremental A/B phase (800 pulse/rotation)				
		Protocol	EtherCAT ${ }^{\text {® }}{ }^{\text {* }}$	EtherNet/IPTM*2	PROFINET*2	DeviceNet ${ }^{\text {TM }}$	IO-Link
	system	Version*1	Conformance Test Record V.1.2.6	Volume 1 (Edition 3.14) Volume 2 (Edition 1.15)	Specification Version 2.32	Volume 1 (Edition 3.14) Volume 3 (Edition 1.13)	Version 1.1 Port Class A
	Communication speed		$100 \mathrm{Mbps}^{* 2}$	10/100 Mbps*2 (Automatic negotiation)	$100 \mathrm{Mbps}^{* 2}$	125/250/500 kbps	$\begin{gathered} 230.4 \mathrm{kbps} \\ (\mathrm{COM} 3) \\ \hline \end{gathered}$
	Configuration file*3		ESI file	EDS file	GSDML file	EDS file	IODD file
	I/O occupation area		Input 20 bytes Output 36 bytes	Input 36 bytes Output 36 bytes	Input 36 bytes Output 36 bytes	Input 4, 10, 20 bytes Output 4, 12, 20, 36 bytes	Input 14 bytes Output 22 bytes
	Terminating resistor		Not included				
Memory			EEPROM				
LED indicator			PWR, RUN, ALM, ERR	PWR, ALM, MS, NS	PWR, ALM, SF, BF	PWR, ALM, MS, NS	PWR, ALM, COM
Cable length [m]			Actuator cable: 20 or less				
Cooling system			Natural air cooling				
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 40 (No freezing)				
Operating humidity range [\%RH]			90 or less (No condensation)				
Insulation resistance [M ${ }^{\text {] }}$]			Between all external terminals and the case: 50 (500 VDC)				
Weight [g]			220 (Screw mounting) 240 (DIN rail mounting)	210 (Screw mounting) 230 (DIN rail mounting)	220 (Screw mounting) 240 (DIN rail mounting)	210 (Screw mounting) 230 (DIN rail mounting)	190 (Screw mounting) 210 (DIN rail mounting)

*1 Please note that versions are subject to change
*2 Use a shielded communication cable with CAT5 or higher for the PROFINET, EtherNet/IP ${ }^{\text {TM }}$, and EtherCAT® .
*3 The files can be downloaded from the SMC website.

-Trademark

EtherNet/IPTM is a trademark of ODVA.
DeviceNet ${ }^{\text {TM }}$ is a trademark of ODVA.
EtherCAT ${ }^{\circledR}$ is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Example of Operation Command

In addition to the step data input of 64 points maximum in each communication protocol, the changing of each parameter can be performed in real time via numerical data defined operation.

* Numerical values other than "Moving force," "Area 1," and "Area 2" can be used to perform operation under numerical instructions from JXCL1.
<Application example> Movement between 2 points

No.	Movement mode	Speed	Position	Acceleration	Deceleration	Pushing force	Trigger LV	Pushing speed	Moving force	Area 1	Area 2	In position
0	1: Absolute	100	10	3000	3000	0	0	0	100	0	0	0.50
1	1: Absolute	100	100	3000	3000	0	0	0	100	0	0	0.50

<Step no. defined operation>

Sequence 1: Servo ON instruction
Sequence 2: Instruction to return to origin
Sequence 3: Specify step data No. 0 to input the DRIVE signal.
Sequence 4: Specify step data No. 1 after the DRIVE signal has been temporarily turned OFF to input the DRIVE signal.

<Numerical data defined operation>

Sequence 1: Servo ON instruction
Sequence 2: Instruction to return to origin
Sequence 3: Specify step data No. 0 and turn ON the input instruction flag (position). Input 10 in the target position. Subsequently the start flag turns ON. Sequence 4: Turn ON step data No. 0 and the input instruction flag (position) to change the target position to 100 while the start flag is ON.

The same operation can be performed with any operation command.

JXCE1/JXC91

JXCP1/JXCD1

Speciicic Product $_{\text {Precautions }}$

JXCE1/91/P1/D1/L1 Series

Dimensions

JXCL1

L Dimensions [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]
LE C CP -
Cable length (L) [m]

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	$8^{* 1}$
\mathbf{A}	$10^{* 1}$
\mathbf{B}	$15^{* 1}$
\mathbf{C}	$20^{* 1}$

*1 Produced upon receipt of order (Robotic cable only)

Cable type

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

Weight

Product no.	Weight [g]	Note
LE-CP-1-S	190	Standard cable
LE-CP-3-S	280	
LE-CP-5-S	460	
LE-CP-1	140	Robotic cable
LE-CP-3	260	
LE-CP-5	420	
LE-CP-8	790	
LE-CP-A	980	
LE-CP-B	1460	
LE-CP-C	1940	

LE-CP- ${ }_{5}^{1} /$ Cable length: $1.5 \mathrm{~m}, \mathbf{3} \mathrm{~m}, 5 \mathrm{~m}$

(*1 Produced upon receipt of order)

Signal	Connector A terminal no.		Cable color	Connector C terminal no.
A	B-1		Brown	2
$\overline{\mathrm{A}}$	A-1		Red	1
B	B-2		Orange	6
\bar{B}	A-2		Yellow	5
COM-A/COM	B-3		Green	3
COM-B/-	A-3		Blue	4
		Shield	Cable color	Connector D terminal no.
Vcc	B-4	i!	Brown	12
GND	A-4	$1 \times \infty \times 1$	Black	13
$\overline{\mathrm{A}}$	B-5	1	Red	7
A	A-5		Black	6
\bar{B}	B-6	1	Orange	9
B	A-6		Black	8
			-	3

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

E-CP -	
Cable length (L) [m]	
1	1.5
3	3
5	5
8	8*1
A	10*1
B	15*1
C	20*1

*1 Produced upon receipt of order (Robotic cable only) With lock and sensor

Cable type

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

LE-CP- ${ }_{5}^{1} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

LE-CP- ${ }_{A C}^{8}$ /Cable length: $\mathbf{8 m} \mathbf{m}, \mathbf{1 0 m} \mathbf{~} \mathbf{1 5} \mathbf{m}, \mathbf{2 0 m}$
(*1 Produced upon receipt of order)

Signal	Connector A terminal no.	Cable color	Connector C terminal no.
A	B-1	Brown	2
$\overline{\mathrm{A}}$	A-1	Red	1
B	B-2	Orange	6
\bar{B}	A-2	Yellow	5
COM-A/COM	B-3	Green	3
COM-B/-	A-3	Blue	4
		Cable color	Connector D terminal no.
Vcc	B-4	Brown	12
GND	A-4	Black	13
$\overline{\mathrm{A}}$	B-5	Red	7
A	A-5	Black	6
\bar{B}	B-6	Orange	9
B	A-6	Black	8
		-	3
Signal	terminal no.		
Lock (+)	B-1	Red	4
Lock (-)	A-1	Black	5
Sensor (+)	B-3	Brown	1
Sensor (-)	A-3	Blue	2

Weight

Product no.	Weight [g]	Note
LE-CP-1-B-S	240	Standard cable
LE-CP-3-B-S	380	
LE-CP-5-B-S	630	
LE-CP-1-B	190	
LE-CP-3-B	360	
LE-CP-5-B	590	
LE-CP-8-B	Robotic cable	
LE-CP-A-B		
LE-CP-B-B		
LE-CP-C-B	1920	

JXCE1/91/P1/D1/L1 Series

Options

Controller setting kit JXC-W2

[Contents]

(1) Communication cable
(2) USB cable
(3) Controller setting software

* A conversion cable (P5062-5) is not required.

(1) Communication cable JXC-W2-C

* It can be connected to the controller directly.

2) USB cable JXC-W2-U

(3) Controller setting software (CD-ROM) JXC-W2-S

DIN rail mounting adapter LEC-3-D0

* With 2 mounting screws

This should be used when the DIN rail mounting adapter is mounted onto a screw mounting type controller afterward.

DIN rail AXT100-DR- \square

* For \square, enter a number from the No. line in the table on page 233. Refer to the dimension drawings on pages 232 and 233 for the mounting dimensions.

Power supply plug JXC-CPW

* The power supply plug is an accessory.

(6) (5) (4)
(3) (2) (1)
(1) C 24 V (4) OV
(2) M24V (5) N.C.
(3) EMG
(6) LK RLS

Power supply plug

Terminal name	Function	Details
OV	Common supply (-)	M24V terminal/C24V terminal/EMG terminal/ LK RLS terminal are common (-).
M24V	Motor power supply (+)	Motor power supply (+) of the controller
C24V	Control power supply (+)	Control power supply (+) of the controller
EMG	Stop (+)	Connection terminal of the external stop circuit
LK RLS	Lock release (+)	Connection terminal of the lock release switch

Communication plug connector

For DeviceNet ${ }^{\text {TM }}$
Straight type T-branch type
JXC-CD-S JXC-CD-T

Communication plug connector for DeviceNet ${ }^{\text {TM }}$

Terminal name	Details
V+	Power supply (+) for DeviceNet $^{\text {TM }}$
CAN_H	Communication wire (High)
Drain	Grounding wire/Shielded wire
CAN_L	Communication wire (Low)
V-	Power supply (-) for DeviceNet ${ }^{\text {TM }}$

For IO-Link
Straight type
JXC-CL-S

* The communication plug connector for O-Link is an accessory.

Communication plug connector for IO-Link

Terminal no.	Terminal name	Details
1	L+	+24 V
2	NC	N/A
3	L-	0 V
4	C / Q	IO-Link signal

Conversion cable P5062-5 (Cable length: 300 mm)

[^30]
JXCE1/91/P1/D1/L1 Series

 Precautions Related to Differences in Controller Versions
As the controller version of the JXC series differs, the internal parameters are not compatible.

\square If using the JXC $\square 1 \square-\mathrm{BC}$, please use the latest version of the JXC-BCW (parameter writing tool).
\square There are currently 3 versions available: version 1 products (V1. \square or $\mathrm{S} 1 . \square$), version 2 products (V2. \square or $\mathrm{S} 2 . \square$), and version 3 products (V3. \square or S3. \square). Keep in mind that in order to write a backup file (.bkp) to another controller with the JXC-BCW, it needs to be the same version as the controller that created the file. (For example, a backup file created by a version 1 product can only be written to another version 1 product, and so on.)

Identifying Version Symbols

JXC $\square 1$ Series Version V3. \square or S3. \square Products

$$
\mathrm{XR} S 3.0 \mathrm{~T} 1.0
$$

Applicable models
JXCD1 \square Series JXCE1 \square Series JXCP1 \square Series JXCL1 \square Series

JXC $\square 1$ Series Version V2. \square or S2. \square Products
JXC $\square 1$ Series Version V1. \square or S1. \square Products

$$
\mathrm{XR} \mathrm{~S} 1.0 \mathrm{~T} 1.0
$$

Applicable models
JXCD1 \square Series JXCE1 \square Series JXCP1 \square Series JXCL1 \square Series

LEC Series

Teaching Box/LEC-T1

How to Order

Standard functions
 - Chinese character display
 - Stop switch is provided.

Option

- Enable switch is provided.

* The displayed language can be changed to English or Japanese.

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range $\left[{ }^{\circ} \mathbf{C}\right]$	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight [g]	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When compliance with UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Easy Mode

Function	Details
Step data	- Setting of step data
Jog	- Jog operation - Return to origin
Test	- 1 step operation - Return to origin
Monitor	- Display of axis and step data no. - Display of two items selected from Position, Speed, Force.
ALM	- Active alarm display - Alarm reset
TB setting	- Reconnection of axis (Ver. 1.**) - Displayed language setting (Ver. 2.**) - Setting of easy/normal mode - Setting step data and selection of items from easy mode monitor

Menu Operations Flowchart

Menu	Data
Data	Step data no.
Monitor	Setting of two items selected below
Jog	Ver. 1.**:
Test	Position, Speed, Force, Acceleration, Deceleration
ALM	Ver. 2.**:
TB setting	Position, Speed, Pushing force, Acceleration, Deceleration, Movement MOD, Trigger LV, Pushing speed, Moving force, Area 1, Area 2, In position

Normal Mode

Function	Details
Step data	- Step data setting
Parameter	- Parameters setting
Test	- Jog operation/Constant rate movement - Return to origin - Test drive (Specify a maximum of 5 step data and operate.) - Forced output (Forced signal output, Forced terminal output)
Monitor	- Drive monitor - Output signal monitor - Input signal monitor - Output terminal monitor - Input terminal monitor
ALM	- Active alarm display (Alarm reset) - Alarm log record display
File	- Data saving Save the step data and parameters of the controller which is being used for communication (it is possible to save four files, with one set of step data and parameters defined as one file). - Load to controller Loads the data which is saved in the teaching box to the controller which is being used for communication. - Delete the saved data. - File protection (Ver. 2.**)
TB setting	- Display setting (Easy/Normal mode) - Language setting (Japanese/English) - Backlight setting - LCD contrast setting - Beep sound setting - Max. connection axis - Distance unit (mm/inch)
Reconnect	- Reconnection of axis

Menu Operations Flowchart

ALM Log record display
Log entry display
Load to controller
File deletion
File protection (Ver. 2.**)

TB setting

Easy/Normal
Language
Backlight

- LCD contrast

Beep
Max. connection axis
Password
Distance unit
Reconnect

Dimensions

No.	Description	Function
$\mathbf{1}$	LCD	A screen of liquid crystal display (with backlight)
$\mathbf{2}$	Ring	A ring for hanging the teaching box
$\mathbf{3}$	Stop switch	When switch is pushed in, the switch locks and stops. The lock is released when it is turned to the right.
$\mathbf{4}$	Stop switch guard	A guard for the stop switch
$\mathbf{5}$	Enable switch (Option)	Prevents unintentional operation (unexpected operation) of the jog test function. Other functions such as data change are not covered.
$\mathbf{6}$	Key switch	Switch for each input
$\mathbf{7}$	Cable	Length: 3 meters
$\mathbf{8}$	Connector	A connector connected to CN4 of the controller

3-Axis Step Motor Controller (Etheri 'et/IP Type)

 JXC92 Series
EtherNet/IPTM Type (JXC92)

* Order the actuator separately, including the actuator cable.
(Example: LEY16B-100-S1)
* For the "Speed-Work Load" graph of the actuator, refer to page 40.

Specifications

EtherNet/IP ${ }^{\text {TM }}$ Type (JXC92)

For the setting of functions and operation methods, refer to the operation manual on the SMC website. (Documents/Download --> Instruction Manuals)

*1 Do not use a power supply with inrush current protection for the motor drive power supply.
*2 Power consumption depends on the actuator connected. Refer to the actuator specifications for further details.
*3 EtherNet/IP ${ }^{\text {TM }}$ is a trademark of ODVA.
*4 Applicable to non-magnetizing locks

Dimensions

EtherNet/IPTM ${ }^{\text {TM }}$ Type JXC92

DIN rail mounting

Controller Details

EtherNet/IPTM Type JXC92

No.	Name	Description	Details
(1)	P1, P2	EtherNet/IPTM communication connector	Connect Ethernet cable.
(2)	NS, MS	Communication status LED	Displays the status of the EtherNet/IPTM communication
(3)	$\begin{gathered} \mathrm{X} 100 \\ \text { X10 } \\ \text { X1 } \end{gathered}$	IP address setting switches	Switch to set the 4th byte of the IP address by X1, X10 and X100.
(4)	PWR	Power supply LED (Green)	Power supply ON: Green turns on Power supply OFF: Green turns off
(5)	RUN	Operation LED (Green)	Running in EtherNet/IP ${ }^{\text {TM }}$: Green turns on Running via USB communication: Green flashes Stopped: Green turns off
(6)	USB	USB connection LED (Green)	USB connected: Green turns on USB not connected: Green turns off
(7)	ALM	Alarm LED (Red)	With alarm: Red turns on Without alarm: Red turns off
(8)	USB	Serial communication connector	Connect to a PC via the USB cable.
(9)	ENC 1	Encoder connector (16 pins)	Axis 1: Connect the actuator cable.
(10)	MOT 1	Motor power connector (6 pins)	Axis 1. Connect the actuator cable.
(11)	ENC 2	Encoder connector (16 pins)	Axis 2: Connect the actuator cable.
(12)	MOT 2	Motor power connector (6 pins)	Axis 2. Connect the actuator cable.
(13)	ENC 3	Encoder connector (16 pins)	
(14)	MOT 3	Motor power connector (6 pins)	Axis 3. Connect the actuator cable.
(15)	CI	Control power supply connector*1	Control power supply (+), All axes stop (+), Axis 1 lock release (+), Axis 2 lock release (+), Axis 3 lock release (+), Common (-)
(16)	M PWR	Motor power supply connector*1	Motor power supply (+), Motor power supply (-)

4-Axis Step Motor Controller (Parallel I/O/Etheri' ${ }^{\prime}$ t/IP Type)
 JXC73/83/93 Series

How to Order
Parallel I/O (JXC73/83)

* Two I/O cables are included.

■ EtherNet/IP ${ }^{\text {TM }}$ Type (JXC93)

* Order the actuator separately, including the actuator cable.
(Example: LEY16B-100-S1)
* For the "Speed-Work Load" graph of the actuator, refer to page 40.

4-Axis Step Motor Controller

For the setting of functions and operation methods, refer to the operation manual on the SMC website. (Documents/Download $-->$ Instruction Manuals)
Parallel I/O (JXC73/83)

Item	Specifications
Number of axes	Max. 4 axes
Compatible motor	Step motor (Servo/24 VDC)
Compatible encoder	Incremental A/B phase (Encoder resolution: 800 pulse/rotation)
Power supply*1	Main control power supply Power voltage: 24 VDC $\pm 10 \%$ Max. current consumption: 300 mA Motor power supply, Motor control power supply (Common) Power voltage: 24 VDC $\pm 10 \%$ Max. current consumption: Based on the connected actuator*2
Parallel input	16 inputs (Photo-coupler isolation)
Parallel output	32 outputs (Photo-coupler isolation)
Serial communication	USB2.0 (Full Speed 12 Mbps)
Memory	Flash-ROM/EEPROM
LED indicator	PWR, RUN, USB, ALM
Lock control	Forced-lock release terminal*3
Cable length	I/O cable: 5 m or less, Actuator cable: 20 m or less
Cooling system	Natural air cooling
Operating temperature range	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (No freezing)
Operating humidity range	90% RH or less (No condensation)
Storage temperature range	$-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (No freezing)
Storage humidity range	90% RH or less (No condensation)
Insulation resistance	Between all external terminals and the case: $50 \mathrm{M} \Omega$ (500 VDC)
Weight	1050 g (Screw mounting), 1100 g (DIN rail mounting)

*1 Do not use a power supply with inrush current protection for the motor drive power and motor control power supply.
*2 Power consumption depends on the actuator connected. Refer to the actuator specifications for further details.
*3 Applicable to non-magnetizing locks

EtherNet/IP ${ }^{\text {TM }}$ Type (JXC93)

Item		Specifications
Number of axes		Max. 4 axes
Compatible motor		Step motor (Servo/24 VDC)
Compatible encoder		Incremental A/B phase (Encoder resolution: 800 pulse/rotation)
Power supply*1		Main control power supply Power voltage: 24 VDC $\pm 10 \%$ Max. current consumption: 350 mA Motor power supply, Motor control power supply (Common) Power voltage: 24 VDC $\pm 10 \%$ Max. current consumption: Based on the connected actuator*2
	Protocol	EtherNet/IPTM*4
	Communication speed	$10 \mathrm{Mbps} / 100 \mathrm{Mbps}$ (automatic negotiation)
	Communication method	Full duplex/Half duplex (automatic negotiation)
	Configuration file	EDS file
	Occupied area	Input 16 bytes/Output 16 bytes
	IP address setting range	Manual setting by switches: From 192.168.1.1 to 254, Via DHCP server: Arbitrary address
	Vendor ID	7 h (SMC Corporation)
	Product type	2 Bh (Generic Device)
	Product code	DCh
Serial communication		USB2.0 (Full Speed 12 Mbps)
Memory		Flash-ROM/EEPROM
LED indicator		PWR, RUN, USB, ALM, NS, MS, L/A, 100
Lock control		Forced-lock release terminal*3
Cable length		Actuator cable: 20 m or less
Cooling system		Natural air cooling
Operating temperature range		$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (No freezing)
Operating humidity range		90% RH or less (No condensation)
Storage temperature range		$-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (No freezing)
Storage humidity range		90\% RH or less (No condensation)
Insulation resistance		Between all external terminals and the case: $50 \mathrm{M} \Omega$ (500 VDC)
Weight		1050 g (Screw mounting), 1100 g (DIN rail mounting)

*1 Do not use a power supply with inrush current protection for the motor drive power and motor control power supply.
*2 Power consumption depends on the actuator connected. Refer to the actuator specifications for further details.
*3 Applicable to non-magnetizing locks
*4 EtherNet/IP ${ }^{\text {TM }}$ is a trademark of ODVA.
For the setting of functions and operation methods, refer to the operation manual on the SMC website. (Documents/Download --> Instruction Manuals)

Specifications

JXC73/83/93 Series

Dimensions

Parallel I/O JXC73/83

Screw mounting

EtherNet//PTM Type JXC93
Screw mounting

DIN rail mounting

Controller Details

Parallel I/O JXC73/83

EtherNet/IPTM Type JXC93

No.	Name	Description	Details
(1)	PWR	Power supply LED (Green)	Power supply ON: Green turns on Power supply OFF: Green turns off
(2)	RUN	Operation LED (Green)	Running in parallel I/O: Green turns on Running via USB communication: Green flashes Stopped: Green turns off
(3)	USB	USB connection LED (Green)	USB connected: Green turns on USB not connected: Green turns off
(4)	ALM	Alarm LED (Red)	With alarm: Red turns on Without alarm: Red turns off
(5)	USB	Serial communication	Connect to a PC via the USB cable.
(6)	C PWR	Main control power supply connector (2 pins)*1	Main control power supply (+) (-)
(7)	I/O 1	Parallel I/O connector (40 pins)	Connect to a PLC via the I/O cable.
(8)	I/O 2	Parallel I/O connector (40 pins)	Connect to a PLC via the I/O cable.
(9)	ENC 1	Encoder connector (16 pins)	Axis 1: Connect the actuator cable.
(10)	MOT 1	Motor power connector (6 pins)	
(11)	ENC 2	Encoder connector (16 pins)	Axis 2: Connect the actuator cable.
(12)	MOT 2	Motor power connector (6 pins)	
(13)	CI 12	Motor control power supply connector*1	Motor control power supply (+), Axis 1 stop (+), Axis 1 lock release (+), Axis 2 stop (+), Axis 2 lock release (+)
(14)	M PWR 1] 2	Motor power supply connector*1	For Axis 1, 2. Motor power supply (+), Common (-)
(15)	ENC 3	Encoder connector (16 pins)	Axis 3: Connect the actuator cable.
(16)	MOT 3	Motor power connector (6 pins)	
(17)	ENC 4	Encoder connector (16 pins)	Axis 4: Connect the actuator cable.
(18)	MOT 4	Motor power connector (6 pins)	
(19)	CI 34	Motor control power supply connector*1	Motor control power supply (+), Axis 3 stop (+), Axis 3 lock release (+), Axis 4 stop (+), Axis 4 lock release (+)
(20)	M PWR 34	Motor power supply connector*1	For Axis 3, 4. Motor power supply (+), Common (-)

*1 Connectors are included. (Refer to page 245.)

No.	Name	Description	Details
(1)	PWR	Power supply LED (Green)	Power supply ON: Green turns on Power supply OFF: Green turns off
(2)	RUN	Operation LED (Green)	Running in EtherNet/IPTM: Green turns on Running via USB communication: Green flashes Stopped: Green turns off
(3)	USB	USB connection LED (Green)	USB connected: Green turns on USB not connected: Green turns off
(4)	ALM	Alarm LED (Red)	With alarm: Red turns on Without alarm: Red turns off
(5)	USB	Serial communication	Connect to a PC via the USB cable.
(6)	C PWR	Main control power supply connector (2 pins)*1	Main control power supp
(7)	$\begin{gathered} \mathrm{x} 100 \\ \mathrm{x} 10 \\ \mathrm{x} 1 \end{gathered}$	IP address setting switches	Switch to set the 4th byte of the IP address by X1, X10 and X100.
(8)	MS, NS	Communication status LED	Displays the status of the EtherNet/IP ${ }^{\text {TM }}$ communication
(9)	ENC 1	Encoder connector (16 pins)	Axis 1. Connect the actuator cable.
(10)	MOT 1	Motor power connector (6 pins)	Axis 1. Connect the actuator cable.
(11)	ENC 2	Encoder connector (16 pins)	Axis 2. Connect the actuator cable.
(12)	MOT 2	Motor power connector (6 pins)	
(13)	CI 12	Motor control power supply connector*1	Motor control power supply (+), Axis 1 stop (+), Axis 1 lock release (+), Axis 2 stop (+), Axis 2 lock release (+)
(14)	M PWR 1 2	Motor power supply connector*1	For Axis 1, 2. Motor power supply (+), Common (-)
(15)	ENC 3	Encoder connector (16 pins)	
(16)	MOT 3	Motor power connector (6 pins)	
(17)	ENC 4	Encoder connector (16 pins)	Axis 4: Connect the actuator cable.
(18)	MOT 4	Motor power connector (6 pins)	Axis 4. Connect the actuator cable.
(19)	CI 34	Motor control power supply connector*1	Motor control power supply (+), Axis 3 stop (+), Axis 3 lock release (+), Axis 4 stop (+), Axis 4 lock release (+)
(20)	M PWR 3 4	Motor power supply connector*1	For Axis 3, 4. Motor power supply (+), Common (-)
(21)	P1, P2	EtherNet/IPTM communication connector	Connect Ethernet cable.

[^31]
JXC73/83/92/93 Series

Wiring Example 1

Cable with Main Control Power Supply Connector (For 4 Axes)*1: C PWR			1 pc.	$\begin{array}{\|l\|} \hline \text { For } 4 \text { Axes } \\ \hline \text { JXC73/83/93 } \\ \hline \end{array}$
Terminal name	Function	Details		
$+24 \mathrm{~V}$	Main control power supply (+)	Power supply (+) supplied to the	main contr	
$24-0 \mathrm{~V}$	Main control power supply (-)	Power supply (-) supplied to the	main contr	

*1 Part no.: JXC-C1 (Cable length: 1.5 m)

Cable with main control power supply connector

Motor power supply connector

Motor control power supply connector

Control power supply connector

Wiring Example 2

Parallel I/O Connector

* When you connect a PLC to the I/O 1 or I/O 2 parallel I/O connector, use the I/O cable (JXC-C2- \square). * The wiring changes depending on the type of parallel I/O (NPN or PNP).

I/O 1 Wiring example

NPN JXC73

I/O 1 Input Signal

Name	Details
+COM1 +COM2	Connects the power supply 24 V for input/output signal
IN0 to IN8	Step data specified bit no. (Standard: When 512 points are used)
IN9	Step data specified extension bit no. (Extension: When 2048 points are used)
SETUP	Instruction to return to origin
HOLD	Temporarily stops operation
DRIVE	Instruction to drive
RESET	Resets alarm and interrupts operation
SVON	Servo ON instruction

+COM1	1	OUTO	10	Load
+COM2	21	OUT1	30	Load
		OUT2	11	Load
IN0	2	OUT3	31	Load.
IN1	22	OUT4	12	Load
IN2	3	OUT5	32	Load
IN3	23	OUT6	13	Load.
IN4	4	OUT7	33	Load
IN5	24	OUT8	14	Load.
IN6	5	$\begin{aligned} & \hline \text { BUSY } \\ & \text { (OUT9) } \end{aligned}$	34	Load.
IN7	25	AREA	15	oad,
IN8	6	(OUT10)		
IN9	26	SETON	35	Load.
IN10	7	INP	16	Load.
		SVRE	36	Load
SETUP	27	*ESTOP	17	Load,
HOLD	8	*ALARM	37	Load.
DRIVE	28	-COM1	18	
RESET	9	-COM1	19	
SVON	29	-COM1	38	
		-COM2	20	
		-COM2	39	
		-COM2	40	

I/O 1 Output Signal

Name	Details
OUT0 to OUT8	Outputs the step data no. during operation
BUSY (OUT9)	Outputs when the operation of the actuator is in progress
AREA (OUT10)	Outputs when all actuators are within the area output range
SETON	Outputs when the return to origin of all actuators is completed
INP	Outputs when the positioning or pushing of all actuators is completed
SVRE	Outputs when servo is ON
*ESTOP*1	OFF when EMG stop is instructed
*ALARM*1	OFF when alarm is generated
-COM1 -COM2	Connects the power supply 0 V for input/output signal

PNP JXC83

JXC73/83/92/93 Series

Wiring Example 2

Parallel I/O Connector * When you connect a PLC to the I/O 1 or I/O 2 parallel I/O connector, use the I/O cable (JXC-C2- \square). * The wiring changes depending on the type of parallel I/O (NPN or PNP).

I/O 2 Wiring example

NPN JXC73

I/O 2 Input Signal

Name	Details
+COM3 +COM4	Connects the power supply 24 V for input/output signal
N.C.	Cannot be connected

PNP JXC83

*1 Cannot be connected

BUSY1	10	Load
BUSY2	30	Load
BUSY3	11	Load
BUSY4	31	Load
AREA1	12	Load
AREA2	32	Load
AREA3	13	Load
AREA4	33	Load
INP1	14	Load
INP2	34	Load
INP3	15	Load
INP4	35	Load
*ALARM1	16	Load
*ALARM2	36	Load
*ALARM3	17	Load
*ALARM4	37	Load
-COM3	18	
-COM3	19	
-COM3	38	
-COM4	20	
-COM4	39	
-COM4		

I/O 2 Output Signal

Name	Details
BUSY1	Busy signal for axis 1
BUSY2	Busy signal for axis 2
BUSY3	Busy signal for axis 3
BUSY4	Busy signal for axis 4
AREA1	Area signal for axis 1
AREA2	Area signal for axis 2
AREA3	Area signal for axis 3
AREA4	Area signal for axis 4
INP1	Positioning or pushing completion signal for axis 1
INP2	Positioning or pushing completion signal for axis 2
INP3	Positioning or pushing completion signal for axis 3
INP4	Positioning or pushing completion signal for axis 4
*ALARM1*2	Alarm signal for axis 1
*ALARM2*2	Alarm signal for axis 2
*ALARM3*2	Alarm signal for axis 3
*ALARM4*2	Alarm signal for axis 4
-COM3	Connects the power supply 0 V for input/output signal
-COM4	

*2 Negative-logic circuit signal

Options

Cable with main control power supply connector For 4 Axes
 JXC-C1

Cable length: 1.5 m (Accessory)

Number of cores	2
AWG size	AWG20

I/O cable (1 pc.)

Number of cores	40
AWG size	AWG28

Weight

Product no.	Weight [g]
JXC-C2-1	160
JXC-C2-3	300
JXC-C2-5	480

Pin no.	Wire color						
1	Orange (Black 1)	6	Orange (Black 2)	11	Orange (Black 3)	16	Orange (Black 4)
21	Orange (Red 1)	26	Orange (Red 2)	31	Orange (Red 3)	36	Orange (Red 4)
2	Gray (Black 1)	7	Gray (Black 2)	12	Gray (Black 3)	17	Gray (Black 4)
22	Gray (Red 1)	27	Gray (Red 2)	32	Gray (Red 3)	37	Gray (Red 4)
3	White (Black 1)	8	White (Black 2)	13	White (Black 3)	18	White (Black 4)
23	White (Red 1)	28	White (Red 2)	33	White (Red 3)	38	White (Red 4)
4	Yellow (Black 1)	9	Yellow (Black 2)	14	Yellow (Black 3)	19	Yellow (Black 4)
24	Yellow (Red 1)	29	Yellow (Red 2)	34	Yellow (Red 3)	39	Yellow (Red 4)
5	Pink (Black 1)	10	Pink (Black 2)	15	Pink (Black 3)	20	Pink (Black 4)
25	Pink (Red 1)	30	Pink (Red 2)	35	Pink (Red 3)	40	Pink (Red 4)

DIN rail

For 3 Axes For 4 Axes
AXT100-DR- \square

* For \square, enter a number from the No. line in the table below. Refer to the dimension drawings on pages 240 and 243 for the mounting dimensions.

L Dimensions

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

This should be used when the DIN rail mounting bracket is mounted onto a screw mounting type controller afterward.

JXC73/83/92/93 Series

Options

Contents

(1) Controller setting software (CD-ROM)
(2) USB cable (Cable length: 3 m)

Description		Model
(1)	Controller setting software	JXC-W1-1
(2)	USB cable	JXC-W1-2
	(The same cable as the JXC-MA1-2)	

* Can be ordered separately

Contents

(1) Controller setting software (CD-ROM)*1
(2) USB cable (Cable length: 3 m)

Description		Model
(1)	Controller setting software	JXC-MA1-1
(2)	USB cable	JXC-MA1-2
		(The same cable as the JXC-W1-2)

[^32](1) Controller setting software

Hardware Requirements

PC/AT compatible machine with Windows 7 or Windows 8.1 and USB1.1 or USB2.0 port

* Windows ${ }^{\circledR}$ is a registered trademark of Microsoft Corporation in the United States.

Hardware Requirements

PC/AT compatible machine with Windows 7 or Windows 8.1 and USB1.1 or USB2.0 port
*1 The controller setting software also includes software dedicated for 4 axes.

* Windows ${ }^{\circledR}$ is a registered trademark of Microsoft Corporation in the United States.

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

LE-CP- ${ }_{5}^{1} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$
JXC92 JXC73/83/93
LE C CP -
Cable length (L) [m]

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	$8^{* 1}$
\mathbf{A}	$10^{* 1}$
\mathbf{B}	$15^{* 1}$
\mathbf{C}	$20^{* 1}$

*1 Produced upon receipt of order (Robotic cable only)

Controller side

LE-CP- ${ }_{A C}^{8 B}$ /Cable length: $\mathbf{8 m} \mathbf{m}, \mathbf{1 0 m}, \mathbf{1 5} \mathbf{m}, \mathbf{2 0 m}$ (*1 Produced upon receipt of order)

Weight
Weight

Product no.	Weight [g]	Note
LE-CP-1-S	190	
LE-CP-3-S	280	
LE-CP-5-S	460	
LE-CP-1	140	
LE-CP-3	260	
LE-CP-5	420	Robotic cable
LE-CP-8	790	
LE-CP-A	980	
LE-CP-B	1460	
LE-CP-C	1940	

Signal	Connector A terminal no.		Cable color	Connector C terminal no.
A	B-1		Brown	2
$\overline{\mathrm{A}}$	A-1		Red	1
B	B-2		Orange	6
\bar{B}	A-2		Yellow	5
COM-A/COM	B-3		Green	3
COM-B/-	A-3		Blue	4
,	-	Shield	Cable color	Connector D terminal no.
Vcc	B-4	1 -	Brown	12
GND	A-4	$1 \times \infty$	Black	13
$\overline{\mathrm{A}}$	B-5	1	Red	7
A	A-5	1	Black	6
\bar{B}	B-6	1	Orange	9
B	A-6	', $\operatorname{lo}^{\prime}$	Black	8
			-	3

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

For 3 Axes For 4 Axes
 JXC92 JXC73/83/93

Cable length (L) [m]

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	$8^{* 1}$
\mathbf{A}	$10^{* 1}$
\mathbf{B}	$15^{* 1}$
\mathbf{C}	$20^{* 1}$

*1 Produced upon receipt of order (Robotic cable only) With lock and sensor

Cable type

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

Weight

Product no.	Weight [g]	Note
LE-CP-1-B-S	240	Standard cable
LE-CP-3-B-S	380	
LE-CP-5-B-S	630	
LE-CP-1-B	190	
LE-CP-3-B	360	
LE-CP-5-B	590	Robotic cable
LE-CP-8-B	1060	
LE-CP-A-B	1320	
LE-CP-B-B	1920	
LE-CP-C-B	2620	

LE-CP- ${ }_{5}^{1} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

(*1 Produced upon receipt of order)

AC Servo Motor Driver LECS $\square / L E C Y \square$ Series

Pulse Input Type/Positioning Type

Incremental Type
 LECSA Series

SSCNET III Type

Absolute Type
 LECSS Series

MECHATROLINK-III Type

Absolute Type
 LECYU Series

Pulse Input Type

Absolute Type

LECSB Series

SSCNET III/H Type

Absolute Type
 LECSS-T Series

CC-Link Direct
Absolute Type
LECSC Series

MECHATROLINK-II Type

Absolute Type
 LECYM Series

AC Servo Motor Driver
 LECS \square
 Series

LECSA Series (Pulse input type/Positioning type)

- Up to 7 positioning points by point table
- Input type: Pulse input
- Control encoder: Incremental 17-bit encoder (Resolution: 131072 p/rev)
- Parallel input: 6 inputs
output: 4 outputs

LECSB Series (Pulse input type)

- Input type: Pulse input
- Control encoder: Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$)
- Parallel input: 10 inputs output: 6 outputs

LECSC Series (CC-Link direct input type)

- Position data/speed data setting and operation start/stop
- Positioning by up to 255 point tables (when 2 stations are occupied)
- Up to 32 drivers can be connected (when 2 stations are occupied) with CC-Link communication.
- Applicable Fieldbus protocol: CC-Link (Ver. 1.10, Max. communication speed: 10 Mbps)
- Control encoder: Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$)

LECSS Series (SSCNET III type)

- Compatible with Mitsubishi Electric's servo system controller network
- Reduced wiring and SSCNET III optical cable for one-touch connection
- The SSCNET III optical cable provides enhanced noise resistance.
- Up to 16 drivers can be connected with SSCNET III communication.
- Applicable Fieldbus protocol: SSCNET III
(High-speed optical communication, Max. bidirectional communication speed: 50 Mbps)
- Control encoder: Absolute 18-bit encoder (Resolution: 262144 p/rev)

SSCNE

- Applicable Fieldbus protocol: SSCNETIIIH (High-speed optical communication, max. bidirectional communication speed: 150 Mbps) - Bidirectional communication speed: 3 times

- SSCNET III/H and SSCNET III products are compatible.

SSCNET III/H compatible products can be added to existing SSCNET III systems for system expansion.
Reassembly of the system (new installation of master PLC) is not required.

* Note that the communication speed is that of SSCNET III (50 Mbps).

Communication speed: $\mathbf{5 0}$ Mbps
SSCNETIII/H compatible controllers SSCNET III compatible controllers

Existing model

- Improved noise resistance - STO (Safe Torque Off) safety function available

 - Control encoder: Absolute 22-bit encoder (Resolution: $4194304 \mathrm{p} / \mathrm{rev}$) LECSS-T Series (SSCNET III/H type)- Applicable Fieldbus protocol:

(High-speed optical communication, max. bidirectional communication speed: 150 Mbps)
- Bidirectional communication speed: 3 times
- SSCNET III/H and SSCNET III products are compatible.
- Improved noise resistance
- STO (Safe Torque Off) safety function available
- Control encoder: Absolute 22-bit encoder (Resolution: $4194304 \mathrm{p} / \mathrm{rev}$)

LECYM Series (MECHATROLINK-II type)

- Applicable Fieldbus protocol: MMECHATROLINK-II
- Number of connectable drivers: 30 units (Transmission distance: Max. 50 m in total)
- Max. transmission speed: 10 Mbps
- Min. transmission cycle: $250 \mu \mathrm{~s}$
- Control encoder: Absolute 20-bit encoder (Resolution: 1048576 p/rev)
- STO (Safe Torque Off) safety function available
- Compliant with the SEMI F47 Standard (Torque limit for low DC power supply voltage for main circuit)

LECYU Series (MECHATROLINK-III type)

- Applicable Fieldbus protocol: MMECHATROLINK-III
- Number of connectable drivers: 62 units (Transmission distance: Max. 75 m between stations)
- Max. transmission speed: 100 Mbps
- Min. transmission cycle: $125 \mu \mathrm{~s}$
- Control encoder: Absolute 20-bit encoder (Resolution: $1048576 \mathrm{p} / \mathrm{rev}$)
- STO (Safe Torque Off) safety function available
- Compliant with the SEMI F47 Standard (Torque limit for low DC power supply voltage for main circuit)

AC Servo Motor Driver

Incremental Type

LECSA Series (Pulse Input Type/Positioning Type) Absolute Type
 LECSS $_{\text {(sscNet TType) }} / L E C S S-T_{\text {(SSCNET III T Type) }}$

LECSS
LECSS-T
.

* If an I/O connector (CN1) is required, order the part number "LE-CSN \square " separately.
* If an I/O cable (CN1) is required, order the part number "LEC-CSN \square-1" separately.
(Since the electric actuator will not operate without emergency stop (EMG) wiring for the LECSB, an I/O connector or an I/O cable is required.)
Compatible motor type

Symbol	Type	Capacity	Encoder
S1	AC servo motor (S2*1)	100 W	Incremental
S3	AC servo motor (S3*1)	200 W	
S4	AC servo motor (S4*1)*2	400 W	
S5	AC servo motor (S6*1)	100 W	Absolute
S7	AC servo motor (S7*1)	200 W	
S8	AC servo motor (S8*1)*2	400 W	

*1 The symbol shows the motor type (actuator).
*2 Only available for power supply voltage "200 to 230 VAC"

LECSS-T
AC servo motor drivers have been added to the LECSB-T/ LECSC-T series absolute types. Click here for details.

LECS $\square / L E C S S-T$ Series

Dimensions

LECSA \square

For LECSA \square-S1, S3

For LECSA \square-S4

Dimensions

LECSS2-T \square

Connector name	Description
CN1A	Front axis connector for SSCNET III/H
CN1B	Rear axis connector for SSCNET III/H
CN2	Encoder connector
CN3	I/O signal connector
CN4	Battery connector
CN5	USB communication connector
CN8	STO input signal connector
CNP1	Main circuit power supply connector
CNP2	Control circuit power supply connector
CNP3	Servo motor power connector

Dimensions				[mm]
Model	W	L	D	M
LECSS2-T5	40	135	4	6
LECSS2-T7				
LECSS2-T8		170	5	

LECS $\square / L E C S S-T$ Series

Specifications

LECSA Series

Model	LECSA1-S1	LECSA1-S3	LECSA2-S1	LECSA2-S3	LECSA2-S4
Compatible motor capacity [W]	100	200	100	200	400
Compatible encoder	Incremental 17-bit encoder (Resolution: $131072 \mathrm{p} / \mathrm{rev}$)				
Main Power voltage [V]	Single phase 100 to 120 VAC ($50 / 60 \mathrm{~Hz}$)		Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
power ${ }^{\text {p }}$ (Allowable voltage fluctuation [V]	Single phase 85 to 132 VAC		Single phase 170 to 253 VAC		
supply Rated current [A]	3.0	5.0	1.5	2.4	4.5
Control Control power supply voltage [V]	24 VDC				
power Allowable voltage fluctuation [V]	21.6 to 26.4 VDC				
supply \quad Rated current [A]	0.5				
Parallel input	6 inputs				
Parallel output	4 outputs				
Max. input pulse frequency [pps]	1 M (for differential receiver), 200 k (for open collector)*2				
In-position range setting [pulse]	0 to ± 65535 (Command pulse unit)				
Function Error excessive	± 3 rotations				
Function Torque limit	Parameter setting				
Communication	USB communication				
Operating temperature range [${ }^{\circ} \mathrm{C}$]	0 to 55 (No freezing)				
Operating humidity range [\%RH]	90 or less (No condensation)				
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-20 to 65 (No freezing)				
Storage humidity range [\%RH]	90 or less (No condensation)				
Insulation resistance [M 2]	Between the housing and SG: 10 (500 VDC)				
Weight [g]	600				700

LECSB Series

	Model	LECSB1-S5	LECSB1-S7	LECSB2-S5	LECSB2-S7	LECSB2-S8
Compatib	le motor capacity [W]	100	200	100	200	400
Compatib	be encoder		Absolute 18-bit	coder (Resolut	$262144 \mathrm{p} / \mathrm{rev}$)	
	Power voltage [V]	Single phase 100	20 VAC ($50 / 60 \mathrm{~Hz}$)	Three Single	$\begin{aligned} & \text { e } 200 \text { to } 230 \mathrm{~V} / \\ & \text { e } 200 \text { to } 230 \mathrm{~V} \text { - } \end{aligned}$	$\begin{aligned} & 0 / 60 \mathrm{~Hz}) \\ & 50 / 60 \mathrm{~Hz}) \end{aligned}$
power supply	Allowable voltage fluctuation [V]	Single phase	to 132 VAC		phase 170 to 2 phase 170 to	
	Rated current [A]	3.0	5.0	0.9	1.5	2.6
Control	Control power supply voltage [V]	Single phase 100	20 VAC ($50 / 60 \mathrm{~Hz}$)	Single ph	200 to 230 VAC	0/60 Hz)
power	Allowable voltage fluctuation [V]	Single phase	to 132 VAC		phase 170 to 25	
supply	Rated current [A]				0.2	
Parallel in	nput			10 inputs		
Parallel	utput			6 outputs		
Max. inpu	ut pulse frequency [pps]		1 M (for differentia	receiver), 200 k	open collector)*	
	In-position range setting [pulse]		0 to ± 1	00 (Command p	unit)	
Function	Error excessive			± 3 rotations		
	Torque limit		ameter setting or	ernal analog inp	etting (0 to 10 V	
	Communication		USB commu	ation, RS422 co	unication*1	
Operating	g temperature range [${ }^{\mathrm{C}}$]]			o 55 (No freezin		
Operating	g humidity range [\%RH]		90	ess (No condens		
Storage	emperature range [${ }^{\circ} \mathrm{C}$]			to 65 (No freez		
Storage h	humidity range [\%RH]		90 or	ess (No condens		
Insulation	n resistance [M 2]		Between the	ousing and SG:	(500 VDC)	
Weight [g]						1000

*1 USB communication and RS422 communication cannot be performed at the same time.
*2 If the command pulse input is open collector method, it supports only the sink (NPN) type interface. It does not correspond to the source (PNP) type interface.

Specifications

LECSC Series

Model			LECSC1－S5	LECSC1－S7	LECSC2－S5	LECSC2－S7	LECSC2－S8
Compatible motor capacity［W］			100	200	100	200	400
Compatible encoder			Absolute 18－bit encoder（Resolution： $262144 \mathrm{p} / \mathrm{rev}$ ）				
Main power supply	Power voltage［V］		Single phase 100 to 120 VAC （ $50 / 60 \mathrm{~Hz}$ ）		Three phase 200 to 230 VAC（ $50 / 60 \mathrm{~Hz}$ ） Single phase 200 to 230 VAC（ $50 / 60 \mathrm{~Hz}$ ）		
	Allowable voltage fluctuation［V］		Single phase 85 to 132 VAC		Three phase 170 to 253 VAC Single phase 170 to 253 VAC		
	Rated c	［［A］	3.0	5.0	0.9	1.5	2.6
Control power supply	Control power supply voltage［V］		$\begin{gathered} \text { Single phase } 100 \text { to } 120 \mathrm{VAC} \\ (50 / 60 \mathrm{~Hz}) \end{gathered}$		$\begin{gathered} \text { Single phase } 200 \text { to } 230 \text { VAC } \\ (50 / 60 \mathrm{~Hz}) \end{gathered}$		
	Allowable voltage fluctuation［V］		Single phase 85 to 132 VAC		Single phase 170 to 253 VAC		
	Rated current［A］		0.4		0.2		
Communication specifications	Applicable Fieldbus protocol（Version）		CC－Link communication（Ver．1．10）				
	Connection cable		CC－Link Ver． 1.10 compliant cable（Shielded 3－core twisted pair cable）＊＊				
	Remote station number		1 to 64				
	Cable length	Communication speed［bps］	16 k	625 k	2.5 M	5 M	10 M
		Maximum overall cable length［m］	1200	900	400	160	100
		Cable length between stations［ m ］	0.2 or more				
	I／O occupation area （Inputs／Outputs）		1 station occupied（Remote I／O 32 points／32 points）／（Remote register 4 words／4 words） 2 stations occupied（Remote I／O 64 points／ 64 points）／（Remote register 8 words／ 8 words）				
	Number of connectable drivers		Up to 42 （when 1 station is occupied by 1 driver），Up to 32 （when 2 stations are occupied by 1 driver），when there are only remote device stations．				
Command method	Remote register input		Available with CC－Link communication（2 stations occupied）				
	Point table No．input		Available with CC－Link communication，RS422 communication CC－Link communication（1 station occupied）： 31 points CC－Link communication（ 2 stations occupied）： 255 points RS422 communication： 255 points				
	Indexer positioning input		Available with CC－Link communication CC－Link communication（1 station occupied）： 31 points CC－Link communication（2 stations occupied）： 255 points				
Communication function			USB communication，RS－422 communication＊2				
Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］			0 to 55 （No freezing）				
Operating humidity range［\％RH］			90 or less（No condensation）				
Storage temperature range［ ${ }^{\circ} \mathrm{C}$ ］			－20 to 65 （No freezing）				
Storage humidity range［\％RH］			90 or less（No condensation）				
Insulation resistance［ $\mathrm{M} \Omega$ ］			Between the housing and SG： 10 （500 VDC）				
Weight［g］			800				1000

＊1 If the system comprises of both CC－Link Ver． 1.00 and Ver． 1.10 compliant cables，Ver． 1.00 specifications are applied to the overall cable length and the cable length between stations．
＊2 USB communication and RS422 communication cannot be performed at the same time．

LECSS Series

Model		LECSS1－S5	LECSS1－S7	LECSS2－S5	LECSS2－S7	LECSS2－S8
Compatible motor capacity［W］		100	200	100	200	400
Compatible encoder		Absolute 18－bit encoder（Resolution： $262144 \mathrm{p} / \mathrm{rev}$ ）				
Main power supply	Power voltage［V］	Single phase 100 to 120 VAC （ $50 / 60 \mathrm{~Hz}$ ）		Three phase 200 to 230 VAC $(50 / 60 \mathrm{~Hz})$ Single phase 200 to 230 VAC（50／60 Hz）		
	Allowable voltage fluctuation［V］	Single phase 85 to 132 VAC		Three phase 170 to 253 VAC Single phase 170 to 253 VAC		
	Rated current［A］	3.0	5.0	0.9	1.5	2.6
Control power supply	Control power supply voltage［V］	Single phase 100 to 120 VAC （ $50 / 60 \mathrm{~Hz}$ ）		Single phase 200 to 230 VAC （ $50 / 60 \mathrm{~Hz}$ ）		
	Allowable voltage fluctuation［V］	Single phase 85 to 132 VAC		Single phase 170 to 253 VAC		
	Rated current［A］	0.4		0.2		
Applicable Fieldbus protocol		SSCNET III（High－speed optical communication）				
Communication function		USB communication				
Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		0 to 55 （No freezing）				
Operating humidity range［\％RH］		90 or less（No condensation）				
Storage temperature range［ ${ }^{\circ} \mathrm{C}$ ］		－20 to 65 （No freezing）				
Storage humidity range［\％RH］		90 or less（No condensation）				
Insulation resistance［M ${ }^{\text {］}}$ ］		Between the housing and SG： 10 （500 VDC）				
Weight［g］		800				1000

LECS $\square / L E C S S-T$ Series

Specifications

LECSS-T Series

Model	LECSS2-T5	LECSS2-T7	LECSS2-T8
Compatible motor capacity [W]	100	200	400
Compatible encoder	Absolute 22-bit encoder (Resolution: $4194304 \mathrm{p} / \mathrm{rev}$)		
Main \quad Power voltage [V]	Three phase 200 to 240 VAC (50/60 Hz), Single phase 200 to 240 VAC ($50 / 60 \mathrm{~Hz}$)		
power Allowable voltage fluctuation [V]	Three phase 170 to 264 VAC (50/60 Hz), Single phase 170 to 264 VAC ($50 / 60 \mathrm{~Hz}$)		
supply Rated current [A]	0.9	1.5	2.6
Control ${ }^{\text {Control power supply voltage [V] }}$	Single phase 200 to 240 VAC ($50 / 60 \mathrm{~Hz}$)		
power Allowable voltage fluctuation [V]	Single phase 170 to 264 VAC		
supply \quad Rated current [A]	0.2		
Applicable Fieldbus protocol	SSCNET III/H (High-speed optical communication)		
Communication function	USB communication		
Operating temperature range [${ }^{\circ} \mathrm{C}$]	0 to 55 (No freezing)		
Operating humidity range [\%RH]	90 or less (No condensation)		
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-20 to 65 (No freezing)		
Storage humidity range [\%RH]	90 or less (No condensation)		
Insulation resistance [M ${ }^{\text {] }}$	Between the housing and SG: 10 (500 VDC)		
Weight [g]	800		1000

Power Supply Wiring Example: LECSA

LECSA $\square-\square$

Main Circuit Power Supply Connector: CNP1 * Accessory

Terminal name	Function	Details
\dagger	Protective earth (PE)	Should be grounded by connecting the servo motor's earth terminal and the control panel's protective earth (PE)
L1	Main circuit power supply	Connect the main circuit power supply. LECSA1: Single phase 100 to 120 VAC, $50 / 60 \mathrm{~Hz}$ LECSA2: Single phase 200 to 230 VAC, $50 / 60 \mathrm{~Hz}$
L2		
P	Regeneration option	Terminal to connect regeneration option LECSA \square-S1: Not connected at time of shipping LECSA \square-S3, S4: Connected at time of shipping * If regeneration option is required for "Model Selection," connect to this terminal.
C		
U	Servo motor power (U)	Connect to motor cable (U, V, W).
V	Servo motor power (V)	
W	Servo motor power (W)	

$|$| Control Circuit Power Supply Connector: CNP2 | | |
| :---: | :--- | :--- |

Terminal name	Function	Details
24 V	Control circuit power supply (24 V)	24 V side of the control circuit power supply (24 VDC) supplied to the driver
0 V	Control circuit power supply $(0 \mathrm{~V})$	0 V side of the control circuit power supply (24 VDC) supplied to the driver

LECS $\square / L E C S S-T$ Series

Power Supply Wiring Example: LECSB, LECSC, LECSS

LECSB1- \square LECSC1-■ LECSS1-

LECSB2- \square
LECSC2-■
LECSS2-

For single phase 200 VAC

For three phase 200 VAC

* For single phase 200 to 230 VAC, power supply should be connected to L_{1} and L_{2} terminals, with nothing connected to $L 3$.

Main Circuit Power Supply Connector: CNP1 * Accessory

Teminal name	Function	Details	
L1	Main circuit power supply	Connect the main circuit power supply. LECSB1/LECSC1/LECSS1: Single phase 100 to 120 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L1, L2 LECSB2/LECSC2/LECSS2: Single phase 200 to 230 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L1, L2 Three phase 200 to 230 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L1, L2, L3	
L2			
L3			
N	Do not connect.		
P1	Connect between P_{1} and P_{2}. (Connected at time of shipping)		
P2			

Control Circuit Power Supply Connector: CNP2 * Accessory

Temmina name	Function	Details
P	Regeneration	Connect between P and D. (Connected at time of shipping) * If regeneration option is required for "Model Selection," connect to this terminal.
C	option	

Motor Connector: CNP3 * Accessory

Termina name	Function	
U	Servo motor power (U)	
V	Servo motor power (V)	Connect to motor cable (U, V, W).
W	Servo motor power (W)	

Power Supply Wiring Example: LECSS2-T \square

For single phase 200 VAC

For three phase 200 VAC

* For single phase 200 to 240 VAC, power supply should be connected to L1 and L3 terminals, with nothing connected to L2.

Please note that the wiring locations differ from the LECS \square.
Main Circuit Power Supply Connector: CNP1 * Accessory

Terminal name	Function	Details
L1	Main circuit power supply	Connect the main circuit power supply. LECSS2: Single phase 200 to 240 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L1, L3 Three phase 200 to 240 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L1, L2, L3
L2		
L3		
$\mathrm{N}(-)$		Do not connect.
P3		nnect between P_{3} and P_{4}. (Connected at time of shipping)
P4		

Control Circuit Power Supply Connector: CNP2 * Accessory

Teminal name	Function	Details
$\mathrm{P}(+)$	Regeneration option	Connect between $\mathrm{P}(+)$ and D . (Connected at time of shipping) * If regeneration option is required for "Model Selection," connect to this terminal.
C		
L11	Control circuit power supply	Connect the control circuit power supply. LECSS2: Single phase 200 to 240 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L11, L21 Three phase 200 to 240 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L11, L21
L21		

Motor Connector: CNP3 * Accessory

Temmnan name	Function	
U	Servo motor power (U)	
V	Servo motor power (V)	Connect to motor cable (U, V, W).
W	Servo motor power (W)	

LECS $\square / L E C S S-T$ Series

Control Signal Wiring Example: LECSA

LECSA $\square-\square$
This wiring example shows connection with a PLC (FX3U- $\square \square$ MT/ES) manufactured by Mitsubishi Electric Corporation as when used in position control mode. Refer to the LECSA series Operation Manual and any technical literature or operation manuals for your PLC and positioning unit before connecting to another PLC or positioning unit.

 the control panel's protective earth (PE).
*2 For interface use, supply $24 \mathrm{VDC} \pm 10 \% 200 \mathrm{~mA}$ using an external source. 200 mA is the value when all $/ / \mathrm{O}$ command signals are being used. In addition, reducing the number of inputs/outputs can decrease the current capacity. Refer to the Operation Manual for required current for interface.
*3 The failure (ALM) is normally ON. When it is OFF (alarm occurs), stop the PLC signal using the sequence program.
*4 Signals of the same name are connected inside the driver.
*5 For command pulse input with an open collector method. When a positioning unit loaded with a differential line driver method is used, it is 10 m or less.
*6 If the command pulse input is open collector method, it supports only the sink (NPN) type interface. It does not correspond to the source (PNP) type interface.

Control Signal Wiring Example：LECSB

This wiring example shows connection with a positioning unit（QD75D）manufactured by Mitsubishi Electric Corporation as when used in position control mode．Refer to the LECSB series Operation Manual and any technical literature or operation manuals for your PLC and positioning unit before connecting to another PLC or positioning unit．

＊1 For preventing electric shock，be sure to connect the driver＇s protective earth（PE）terminal（marked Θ ）to the control panel＇s protective earth（PE）．
＊2 For interface use，supply 24 VDC $\pm 10 \% 300 \mathrm{~mA}$ using an external source．
＊3 The failure（ALM）is normally ON．When it is OFF（alarm occurs），stop the PLC signal using the sequence program．
＊4 Signals of the same name are connected inside the driver．
＊5 For command pulse input with a differential line driver method．For open collector method，it is 2 m or less．
＊6 If the command pulse input is open collector method，it supports only the sink（NPN）type interface．It does not correspond to the source（PNP）type interface．

LECS $\square / L E C S S-T$ Series

Control Signal Wiring Example: LECSC

*1 For preventing electric shock, be sure to connect the driver's protective earth (PE) terminal (marked Θ) to the control panel's protective earth (PE).
*2 For interface use, supply 24 VDC $\pm 10 \% 150 \mathrm{~mA}$ using an external source.
*3 The failure (ALM) is normally ON. When it is OFF (alarm occurs), stop the PLC signal using the sequence program.

Control Signal Wiring Example: LECSS

SSCNET III optical cable*5 (Option)
*1 For preventing electric shock, be sure to connect the driver's protective earth (PE) terminal (marked Θ) to the control panel's protective earth (PE).
*2 For interface use, supply 24 VDC $\pm 10 \% 150 \mathrm{~mA}$ using an external source.
*3 The failure (ALM) is normally ON. When it is OFF (alarm occurs), stop the PLC signal using the sequence program.
*4 Signals of the same name are connected inside the driver.
*5 Use the following SSCNET III optical cables.
Refer to "SSCNET III optical cable" on page 271 for cable product numbers.

Cable	Product no.	Cable length
SSCNET III optical cable	LE-CSS- \square	0.15 m to 3 m

*6 Connections from Axis 2 onward are omitted.
*7 Up to 16 axes can be set.
*8 Be sure to place a cap on unused CN1A/CN1B.

LECS $\square / L E C S S-T$ Series

Control Signal Wiring Example: LECSS2-T \square

For sink (NPN) I/O interface

LECSS2-T \square

*6 Connections from Axis 2 onward are omitted.
*7 Up to 64 axes can be set for the axis selection rotary switch (SW1) and auxiliary axis number setting switches (SW2-3, SW2-4) in combination. Note that the number of connection axes depends on the specifications of the master PLC.
*8 Be sure to place a cap on unused CN1A/CN1B.
*9 When not using the STO function, use the driver with the shortcircuit connector (provided as an accessory) inserted.
*10 Configure a circuit to turn off EM2 when the main circuit power is turned off to prevent any unexpected restarts of the driver.

Options

Motor cable, Lock cable, Encoder cable (LECS \square, LECSS-T common)

Cable length (L) [m]	
2	2
5	5
A	10

Product no.	ØD
LE-CSB-S $\square \mathbf{A}$	4.7
LE-CSB-S $\square \mathbf{B}$	
LE-CSB-R $\square \mathbf{A}$	4.5
LE-CSB-R $\square \mathbf{B}$	

LE-CSE- $\square \square$: Encoder cable

*1 If using an actuator with a lock, a lock cable is required.

Weight

Product no.	Length $[\mathrm{m}]$	Weight [g]
LE-CSM-S2 \square	2	180
LE-CSM-S5 \square	5	400
LE-CSM-SA \square	10	800
LE-CSM-R2 \square	2	180
LE-CSM-R5 \square	5	400
LE-CSM-RA \square	10	800

Weight

Product no.	Length $[\mathrm{m}]$	Weight $[\mathrm{g}]$
LE-CSB-S2 \square	2	80
LE-CSB-S5 \square	5	200
LE-CSB-SA \square	10	400
LE-CSB-R2 \square	2	80
LE-CSB-R5 \square	5	200
LE-CSB-RA \square	10	400

Weight

Product no.	Length $[\mathrm{m}]$	Weight $[\mathrm{g}]$
LE-CSE-S2 \square	2	220
LE-CSE-S5 \square	5	600
LE-CSE-SA \square	10	1200
LE-CSE-R2 \square	2	220
LE-CSE-R5 \square	5	600
LE-CSE-RA \square	10	1200

I/O connector (Without cable, Connector only)

* LE-CSNA: 10126-3000PE (connector)/10326-52F0-008 (shell kit) manufactured by 3M Japan Limited or equivalent
LE-CSNB: 10150-3000PE (connector)/10350-52F0-008 (shell kit) manufactured by 3M Japan Limited or equivalent LE-CSNS: 10120-3000PE (connector)/10320-52F0-008 (shell kit) manufactured by 3M Japan Limited or equivalent

LE-CSNB

LE-CSNS

Weight | Product no. | Weight [g] |
| :--- | :--- |
| LE-CSNA | 25 |

Product no.	Weight $[g]$
LE-CSNA	25
LE-CSNB	30
LE-CSNS	16

* Applicable conductor size: AWG24 to 30
* If using the LECSB, emergency stop (EMG) wiring is required in all cases. (The electric actuator will not operate without the wiring.) Prepare an I/O connector or an I/O cable in advance.

LECS $\square / L E C S S-T$ Series

Options

SSCNET III optical cable (LECSS \square-S \square, LECSS2-T \square)

* LE-CSS- \square is MR-J3BUS $\square \mathrm{M}$
manufactured by Mitsubishi Electric Corporation.

Weight

Product no.	Length $[\mathrm{m}]$	Weight [g]
LE-CSS-L	0.15	100
LE-CSS-K	0.3	100
LE-CSS-J	0.5	200
LE-CSS-1	1	200
LE-CSS-3	3	200

I/O cable

Weight

Product no.	Weight [g]
LEC-CSNA	303
LEC-CSNB	472
LEC-CSNS	221

A side
B side

* LEC-CSNA-1: 10126-3000PE (connector)/10326-52F0-008 (shell kit) manufactured by 3M Japan Limited or equivalent
LEC-CSNB-1: 10150-3000PE (connector)/10350-52F0-008 (shell kit) manufactured by 3M Japan Limited or equivalent
LEC-CSNS-1: 10120-3000PE (connector)/10320-52F0-008 (shell kit) manufactured by 3M Japan Limited or equivalent
* Conductor size: AWG24
* If using the LECSB, emergency stop (EMG) wiring is required in all cases. (The electric actuator will not operate without the wiring.)
Prepare an I/O connector or an I/O cable in advance.

Wiring

LEC-CSNA-1: Pin nos. 1 to 26
LEC-CSNB-1: Pin nos. 1 to 50
LEC-CSNS-1: Pin nos. 1 to 20
\(\left.$$
\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Connector } \\
\text { pin no. }\end{array} & \begin{array}{c}\text { Pair no. } \\
\text { of wire }\end{array}
$$ \& Insulation

color\end{array}\right)\) Dot mark | Dot |
| :---: |
| color |$|$

Cable O.D.

Product no.	\varnothing D
LEC-CSNA-1	11.1
LEC-CSNB-1	13.8
LEC-CSNS-1	9.1

Dimensions/Pin Nos.

Product no.	W	H	T	U	Pin no. n
LEC-CSNA-1	39	37.2	12.7	14	14
LEC-CSNB-1		52.4		18	26
LEC-CSNS-1		33.3		14	21

Connector pin no.		Pair no. of wire	Insulation color	Dot mark	Dot color
$\frac{0}{9}$	19	10	Pink	$\square \square$	Red
	20			■	Black
	21	11	Orange	$\square \square \square$	Red
	22			$\square \square \square$	Black
	23	12	Light gray	$\square \square \square$	Red
	24			$\square \square \square$	Black
	25	13	White	-	Red
	26			-mm	Black
	27	14	Yellow	$\square \square \square$	Red
	28			- $=$	Black
	29	15	Pink	- $=$ -	Red
	30			$\square \square \square$	Black
	31	16	Orange	-mmm	Red
	32			-mmm	Black
	33	17	Light gray	Em@m	Red
	34			-mmm	Black

Connector pin no.		Pair no. of wire	$\begin{gathered} \text { Insulation } \\ \text { color } \end{gathered}$	Dot mark	Dot color
$\begin{aligned} & \frac{0}{0} \\ & \hline \frac{0}{4} \\ & \hline \end{aligned}$	35	18	White	-mmm	Red
	36			-mme	Black
	37	19	Yellow	-mmm	Red
	38			■■■	Black
	39	20	Pink	■■mm	Red
	40			-mmm	Black
	41	21	Orange	-mmme	Red
	42			-mmmm	Black
	43	22	Light gray	-	Red
	44			■■	Black
	45	23	White	■■■mm	Red
	46				Black
	47	24	Yellow		Red
	48			\#\#\#m	Black
	49	25	Pink	\#\#mm违	Red
	50			-mmme	Black

Options

Regeneration option (LECS \square, LECSS-T common)

* Confirm regeneration option to be used in "Model Selection."

LEC-MR-RB-032

Weight

Product no.	Weight [kg]
LEC-MR-RB-032	0.5

* MR-RB032 manufactured by Mitsubishi Electric Corporation

LEC-MR-RB-12

Weight

Product no.	Weight [kg]
LEC-MR-RB-12	1.1

* MR-RB12 manufactured by Mitsubishi Electric Corporation

LECS $\square / L E C S S-T$ Series

Options

Setup software (MR Configurator2 ${ }^{\text {TM }}$) (LECSA, LECSB, LECSC, LECSS, LECSS-T common) LEC - MRC2
display language

Nil	Japanese version
\mathbf{E}	English version
\mathbf{C}	Chinese version

* SW1DNC-MRC2- \square manufactured by Mitsubishi Electric Corporation Refer to Mitsubishi Electric Corporation's website for operating environment and version upgrade information.
MR Configurator2 ${ }^{\text {TM }}$ is a registered trademark or trademark of Mitsubishi Electric Corporation.

Adjustment, waveform display, diagnostics, parameter read/write, and test operation can be performed upon a PC.

Compatible PC

When using setup software (MR Configurator2 ${ }^{\text {TM }}$), use an IBM PC/AT compatible PC that meets the following operating conditions.

Hardware Requirements

Equipment		Setup software (MR Configurator2 ${ }^{\text {TM }}$) LEC-MRC2 \square
$\begin{aligned} & * 1,2,3,4,4, \\ & 5,6,7,8, \\ & 9,10 \\ & \text { PC } \end{aligned}$	OS	Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 10$ Edition Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 10$ Enterprise Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 10$ Pro Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 10$ Home Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ 8.1 Enterprise Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ 8.1 Pro Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 8.1$ Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 8$ Enterprise Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 8$ Pro Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 8$ Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Ultimate Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Enterprise Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Professional Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Home Premium Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Starter Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Ultimate Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Enterprise Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Business Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Home Premium Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Home Basic Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ XP Professional, Service Pack 3 or later Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ XP Home Edition, Service Pack 3 or later
	Hard disk	1 GB or more of free space
	Communication interface	Use USB port.
Display		Resolution 1024×768 or more Must be capable of high color (16-bit) display. Connectable with the PC above
Keyboard		Connectable with the PC above
Mouse		Connectable with the PC above
Printer		Connectable with the PC above
USB cable*11		LEC-MR-J3USB

Setup Software Compatible Drivers

Compatible driver	Setup software	
	MR Configurator ${ }^{\text {TM }}$	MR Configurator2 ${ }^{\text {TM }}$
	LEC-MR-SETUP221■	LEC-MRC2 \square
LECSA	\bigcirc	\bigcirc
LECSB	\bigcirc	\bigcirc
LECSC	\bigcirc	\bigcirc
LECSS \square-S \square	\bigcirc	\bigcirc
LECSS2-T \square	-	\bigcirc

*1 Before using a PC for setting LECSA point table method/program operation method, upgrade to version 1.18U (Japanese version)/ version 1.19V (English version) or later. Refer to Mitsubishi Electric Corporation's website for version upgrade information.
*2 Windows ${ }^{\circledR}$ and Windows Vista ${ }^{\circledR}$ are registered trademarks of Microsoft Corporation in the United States and other countries.
*3 On some PCs, setup software (MR Configurator2 ${ }^{\text {TM }}$) may not run properly.
*4 The following functions cannot be used. If any of the following functions is used, this product may not operate normally.
Start of application in Windows ${ }^{\circledR}$ compatible mode
Fast User Switching
Remote Desktop
Windows XP Mode
Windows Touch or Touch

- Modern UI
- Client Hyper-V

Tablet Mode

- Virtual desktop
-64-bit OSs are not supported, except for Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ or later.
*5 Multi-display is set, the screen of this product may not operate normally.
*6 The size of the text or other items on the screen is not changed to the specified value ($96 \mathrm{DPI}, 100 \%$, 9 pt , etc.), the screen of this product may not operate normally.
*7 Changed the resolution of the screen during operating, the screen of this product may not operate normally.
*8 Please use by "Standard User," "Administrator" in Windows Vista ${ }^{\circledR}$ or later.
*9 Using a PC for setting Windows ${ }^{\circledR 10} 10$, upgrade to version 1.52E or later.
Using a PC for setting Windows ${ }^{\circledR} 8.1$, upgrade to version 1.25B or later.
Using a PC for setting Windows ${ }^{\circledR} 8$, upgrade to version 1.20W or later.

Refer to Mitsubishi Electric Corporation's website for version upgrade information.
*10 If .NET Framework 3.5 (including .NET 2.0 and 3.0) have been disabled in Windows ${ }^{\circledR} 7$ or later, it is necessary to enable it.
*11 Order USB cable separately.
This cable is compatible with the setup software (MR Configurator ${ }^{\text {TM }}$: LEC-MR-SETUP221 \square).

Options

USB cable (3 m)

(LECSA, LECSB, LECSC, LECSS, LECSS-T common)

LEC - MR - J3USB

* MR-J3USBCBL3M manufactured by Mitsubishi Electric Corporation

Weight: 140 g
Cable for connecting PC and driver when using the setup software (MR Configurator2 ${ }^{\text {TM }}$)
Do not use any cable other than this cable.

Battery (Only for LECSB, LECSC, and LECSS)
 LEC-MR - J3BAT
 * MR-J3BAT manufactured by Mitsubishi Electric Corporation

Battery for replacement
Absolute position data is maintained by installing the battery to the driver.

Weight: 30 g

Battery (Only for LECSS2-T \square)

LEC-MR-BAT6V1SET

* MR-BAT6V1SET manufactured by Mitsubishi Electric Corporation

Battery for replacement
Absolute position data is maintained by installing the battery to the driver.

Weight: 60 g

STO cable ($\mathbf{3} \mathbf{~ m}$) (Only for LECSS2-T \square)

LEC-MR - D05UDL3M

* MR-D05UDL3M manufactured by Mitsubishi Electric Corporation

Cable for connecting the driver and device, when using the safety function
Do not use any cable other than this cable.

* The LEC-MR-J3BAT is a single battery that uses lithium metal battery ER6V.
When transporting lithium metal batteries and devices with built-in lithium metal batteries by a method subject to UN regulations, it is necessary to apply measures according to the regulations stipulated in the United Nations Recommendations on the Transport of Dangerous Goods, the Technical Instructions (ICAO-TI) of the International Civil Aviation Organization (ICAO), and the International Maritime Dangerous Goods Code (IMDG CODE) of the International Maritime Organization (IMO). If a customer is transporting products such as shown above, it is necessary to confirm the latest regulations, or the laws and regulations of the country of transport on your own, in order to apply the proper measures. Please contact SMC sales representative for details.
* The LEC-MR-BAT6V1SET is an assembled battery that uses lithium metal battery 2CR17335A.
When transporting lithium metal batteries and devices with built-in lithium metal batteries by a method subject to UN regulations, it is necessary to apply measures according to the regulations stipulated in the United Nations Recommendations on the Transport of Dangerous Goods, the Technical Instructions (ICAO-TI) of the International Civil Aviation Organization (ICAO), and the International Maritime Dangerous Goods Code (IMDG CODE) of the International Maritime Organization (IMO). If a customer is transporting products such as shown above, it is necessary to confirm the latest regulations, or the laws and regulations of the country of transport on your own, in order to apply the proper measures. Please contact SMC sales representative for details.

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website: https://www.smcworld.com

Design / Selection

© Warning

1. Be sure to apply the specified voltage.

Otherwise, malfunction or breakage may occur. If the applied voltage is lower than the specified voltage, it is possible that the load will not be able to be moved due to an internal voltage drop of the driver. Please check the operating voltage before use.
2. Do not operate the product beyond the specifications.

Otherwise, a fire, malfunction, or actuator damage may result. Please check the specifications before use.
3. Install an emergency stop circuit.

Please install an emergency stop outside of the enclosure so that the system operation can be stopped immediately and the power supply can be intercepted.
4. In order to prevent any damage caused by the breakdown or malfunction of the driver and its peripheral devices, a backup system should be established in advance by giving a multiple-layered structure or a failsafe design to the equipment, etc.
5. If a danger of human injury is expected due to abnormal heat generation, smoking, ignition, etc., of the driver and its peripheral devices, cut off the power supply of the product and the system immediately.
6. The parameters of the driver are set to initial values.

Please change the parameters according to the specifications of the customer's equipment before use. Refer to the operation manual for parameter details.

Handling

© Warning

1. Do not touch the inside of the driver and its peripheral devices.
Doing so may cause an electric shock or damage to the driver.
2. Do not perform the operation or setting of the product with wet hands.
Doing so may cause an electric shock.
3. Products with damage or those missing any components should not be used.
An electric shock, fire, or injury may result.
4. Use only the specified combination between the electric actuator and driver.
Failure to do so may cause damage to the actuator or the driver.
5. Be careful not to be hit by workpieces while the actuator is moving.
It may cause an injury.
6. Do not connect the power supply or power on the product before confirming the area to which the workpiece moves is safe.
The movement of the workpiece may cause an accident.
7. Do not touch the product when it is energized and for some time after power has been disconnected, as it is very hot. Doing so may lead to a burn due to the high temperature.
8. Before installation, wiring, and maintenance, the voltage should be checked with a tester 5 minutes after the power supply has been turned off.
Otherwise, an electric shock, fire, or injury may result.

Handling

\triangle Warning

9. Static electricity may cause malfunction or break the driver. Do not touch the driver while power is supplied.
When touching the driver for maintenance, take sufficient measures to eliminate static electricity.
10. Do not use the product in an area where dust, powder dust, water, chemicals, or oil is in the air.
It will cause failure or malfunction.
11. Do not use the product in an area where a magnetic field is generated.
It will cause failure or malfunction.
12. Do not install the product in an environment containing flammable gas, explosive gas, or corrosive gas. It could lead to fire, explosion, or corrosion.
13. Radiant heat from strong heat sources, such as a furnace, direct sunlight, etc., should not be applied to the product.
It will cause failure of the driver or its peripheral devices.
14. Do not use the product in an environment subject to a temperature cycle.
It will cause failure of the driver or its peripheral devices.
15. Do not use the product in a place where surges are generated.
When there are units that generate a large amount of surge around the product (e.g. solenoid type lifters, high-frequency induction furnaces, motors, etc.), this may cause deterioration or damage to the product's internal circuit. Avoid sources of surge generation and crossed lines.
16. Do not install the product in an environment under the effect of vibrations and impacts.
It will cause failure or malfunction.
17. When a surge-generating load, such as a relay or solenoid valve, is driven directly, use a product that incorporates a surge absorption element.

Installation

© Warning

1. Install the driver and its peripheral devices on a fireproof material.
Direct installation on or near a flammable material may cause a fire.
2. Do not install the product in a place subject to vibrations and impacts.
It will cause failure or malfunction.
3. The driver should be mounted on a vertical wall in a vertical direction. Also, be sure not to cover the driver's suction/exhaust ports.
4. Install the driver and its peripheral devices on a flat surface.
If the mounting surface is distorted or uneven, an unacceptable force may be added to the housing, etc., causing problems.

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website: https://www.smcworld.com

Power Supply

\triangle Caution

1. Use a power supply that has low noise between lines and between the power and ground.
In cases where noise is high, an isolation transformer should be used.
2. To prevent lightning surges, appropriate measures should be taken. Ground the surge absorber for lightning separately from the grounding of the driver and its peripheral devices.

Wiring

\triangle Warning

1. The driver will be damaged if a commercial power supply ($100 / 200 \mathrm{~V}$) is added to the driver's servo motor power (U, V, and W). Be sure to check wiring for mistakes when the power supply is turned on.
2. Connect the ends of the \mathbf{U}, V, and W wires of the motor cable correctly to the phases (U, V, and W) of the servo motor power. If these wires do not match up, the servo motor cannot be controlled.

Grounding

© Warning

1. For grounding the actuator, connect the copper wire of the actuator to the driver's protective earth (PE) terminal and connect the copper wire of the driver to the earth via the control panel's protective earth (PE) terminal. Do not connect them directly to the control panel's protective earth (PE) terminal.

2. In the unlikely event that a malfunction is caused by the ground, please disconnect it.

Maintenance

. Warning

1. Perform a maintenance and inspection periodically. Confirm wiring and screws are not loose.
Loose screws or wires may cause unintentional malfunction.
2. Conduct an appropriate functional inspection after completing the maintenance and inspection.
At times where the equipment or machinery does not operate properly, conduct an emergency stop of the system. Otherwise, an unexpected malfunction may occur and it will become impossible to ensure safety. Conduct a test of the emergency stop in order to confirm the safety of the equipment.
3. Do not disassemble, modify, or repair the driver and its peripheral devices.
4. Do not put anything conductive or flammable inside the driver.
It may cause a fire.
5. Do not conduct an insulation resistance test or withstand voltage test on this product.
6. Ensure sufficient space for maintenance activities.

Design the system allowing the required space for maintenance and inspection.

How to Order

Driver

\mathbf{M}	MECHATROLINK-I type (For absolute encoder)
\mathbf{U}	MECHATROLINK-III type (For absolute encoder)

Power supply voltage
$2 \quad 200$ to 230 VAC, $50 / 60 \mathrm{~Hz}$

* If an I/O connector (CN1) is required, order the part number "LE-CYNA" separately.
* If an I/O cable (CN1) is required, order the part number "LEC-CSNA-1" separately.
Compatible motor type

Symbol	Type	Capacity	Encoder
V5	AC servo motor (V6*1)	100 W	Absolute
V7	AC servo motor (V7*1)	200 W	
V8	AC servo motor (V8*1)	400 W	

*1 The symbol shows the motor type (actuator).

Dimensions

ПIMECHATROLINK-II type

LECYM2-V \square

M MECHATROLNK-III type

LECYU2-V \square

Connector name	Description
CN1	I/O signal connector
CN2	Encoder connector
CN3*1	Digital operator connector
CN6A	MECHATROLINK-I communication connector
CN6B	MECHATROLINK-I communication connector
CN7	PC connector
CN8	Safety connector

*1 Digital operator is JUSP-OP05A-1-E manufactured by YASKAWA Electric Corporation. When using the digital operator, it should be provided by the customer.

Motor capacity	Hole position	Mounting dimensions				Mounting hole
		A	B	C	D	
V5 (100 W)	(1)(2)	5	-	5	5	$\varnothing 5$
V7 (200 W)	(1)2)	5	-	5	5	
V8 (400 W)	(2)(3)	5	5	5	5	

* The mounting hole position varies depending on the motor capacity.

Connector name	Description
CN1	I/O signal connector
CN2	Encoder connector
CN3*1	Digital operator connector
CN6A	MECHATROLINK-IIIcommunication connector
CN6B	MECHATROLINK-IIIcommunication connector
CN7	PC connector
CN8	Safety connector

*1 Digital operator is JUSP-OP05A-1-E manufactured by YASKAWA Electric Corporation. When using the digital operator, it should be provided by the customer.

Motor capacity	Holeposition	Mounting dimensions				Mounting hole
		A	B	C	D	
V5 (100 W)	(1)2)	5	-	5	5	$\varnothing 5$
V7 (200 W)	(1)2)	5	-	5	5	
V8 (400 W)	(2)(3)	5	5	5	5	

[^33]
AC Servo Motor Driver $L E C Y^{M}$
 Series

Specifications

MMECHATROLINK-II Type					
Model			LECYM2-V5	LECYM2-V7	LECYM2-V8
Compatible motor capacity [W]			100	200	400
Compatible encoder			Absolute 20-bit encoder (Resolution: $1048576 \mathrm{p} / \mathrm{rev}$)		
Main circuit power supply	Power voltage [V]		Three phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]		Three phase 170 to 253 VAC		
Control power supply	Power voltage [V]		Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]		Single phase 170 to 253 VAC		
Power supply capacity (at rated output) [A]			0.91	1.6	2.8
Input circuit			NPN (Sink circuit)/PNP (Source circuit)		
Parallel input (7 inputs)	Number of optional allocations	$\begin{gathered} 7 \\ \text { inputs } \end{gathered}$	[Initial allocation] - Homing deceleration switch (/DEC) - External latch (/EXT 1 to 3) - Forward run prohibited (P-OT), reverse run prohibited (N-OT) [Can be allocated by setting the parameters] - Forward external torque limit (/P-CL), reverse external torque limit (/N-CL) Signal allocations can be performed, and positive and negative logic can be changed.		
Parallel output (4 outputs)	Number of fixedallocations	1 output	. Servo alarm (ALM)		
	Number of optional allocations	$\stackrel{3}{\text { outputs }}$	[Initial allocation] - Lock (/BK) [Can be allocated by setting the parameters] - Positioning completion (/COIN) - Speed limit detection (/VLT) - Speed coincidence detection (/V-CMP) - Rotation detection (/TGON) - Warning (/WARN) - Servo ready (/S-RDY) - Near (/NEAR) - Torque limit detection (/CLT) Signal allocations can be performed, and positive and negative logic can be changed.		
MECHATROLINK communication	Communication protocol		MECHATROLINK-II		
	Station address		41 H to 5FH		
	Transmission speed		10 Mbps		
	Transmission cycle		$250 \mu \mathrm{~s}, 0.5 \mathrm{~ms}$ to 4 ms (Multiples of 0.5 ms)		
	Number of transmission bytes		17 bytes, 32 bytes		
	Max. number of stations		30		
	Cable length		Overall cable length: 50 m or less, Cable length between the stations: 0.5 m or more		
Command method	Control method		Position, speed, or torque control with MECHATROLINK-II communication		
	Command input		MECHATROLINK-II command (Motion, data setting, monitoring, or adjustment)		
Function	Gain adjustment		Tuning-less/Advanced auto tuning/One-parameter tuning		
	Communication setting		USB communication, RS-422 communication		
	Torque limit		Internal torque limit, external torque limit, and torque limit by analog command		
	Encoder output		Phase A, B, Z: Line driver output		
	Emergency stop		CN8 Safety function		
	Overtravel		Dynamic brake stop, deceleration to a stop, or free run to a stop at P-OT or N-OT		
	Alarm		Alarm signal, MECHATROLINK-II command		
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 55 (No freezing)		
Operating humidity range [\%RH]			90 or less (No condensation)		
Storage temperature range [${ }^{\mathrm{C}}$]			-20 to 85 (No freezing)		
Storage humidity range [\%RH]			90 or less (No condensation)		
Insulation resistance [M 2]			$10 \mathrm{M} \Omega$ (500 VDC)		
Weight [g]			900		1000

Specifications

MMECHATROLINK-III Type					
Model			LECYU2-V5	LECYU2-V7	LECYU2-V8
Compatible motor capacity [W]			100	200	400
Compatible encoder			Absolute 20-bit encoder (Resolution: $1048576 \mathrm{p} / \mathrm{rev}$)		
Main circuit power supply	Power voltage [V]		Three phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]		Three phase 170 to 253 VAC		
Control power supply	Power voltage [V]		Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]		Single phase 170 to 253 VAC		
Power supply capacity (at rated output) [A]			0.91	1.6	2.8
Input circuit			NPN (Sink circuit)/PNP (Source circuit)		
Parallel input (7 inputs)	Number of optional allocations	$\begin{gathered} 7 \\ \text { inputs } \end{gathered}$	[Initial allocation] - Homing deceleration switch (/DEC) - External latch (/EXT 1 to 3) - Forward run prohibited (P-OT), reverse run prohibited (N-OT) [Can be allocated by setting the parameters] - Forward external torque limit (/P-CL), reverse external torque limit (/N-CL) Signal allocations can be performed, and positive and negative logic can be changed.		
Parallel output (4 outputs)	Number of fixed alocations	1 output	Servo alarm (ALM)		
	Number of optional allocations	$\begin{gathered} 3 \\ \text { outputs } \end{gathered}$	[Initial allocation] - Lock (/BK) [Can be allocated by setting the parameters] - Positioning completion (/COIN) - Speed limit detection (/VLT) - Speed coincidence detection (/V-CMP) - Rotation detection (/TGON) - Warning (/WARN) - Servo ready (/S-RDY) - Near (/NEAR) - Torque limit detection (/CLT) Signal allocations can be performed, and positive and negative logic can be changed.		
MECHATROLINK communication	Communication protocol		MECHATROLINK-III		
	Station address		03H to EFH		
	Transmission speed		100 Mbps		
	Transmission cycle		$125 \mu \mathrm{~s}, 250 \mu \mathrm{~s}, 500 \mu \mathrm{~s}, 750 \mu \mathrm{~s}, 1 \mathrm{~ms}$ to 4 ms (Multiples of 0.5 ms)		
	Number of transmission bytes		16 bytes, 32 bytes, 48 bytes		
	Max. number of stations		62		
	Cable length		Cable length between the stations: 0.5 m or more, 75 m or less		
Command method	Control method		Position, speed, or torque control with MECHATROLINK-III communication		
	Command input		MECHATROLINK-III command (Motion, data setting, monitoring, or adjustment)		
Function	Gain adjustment		Tuning-less/Advanced auto tuning/One-parameter tuning		
	Communication setting		USB communication, RS-422 communication		
	Torque limit		Internal torque limit, external torque limit, and torque limit by analog command		
	Encoder output		Phase A, B, Z: Line driver output		
	Emergency stop		CN8 Safety function		
	Overtravel		Dynamic brake stop, deceleration to a stop, or free run to a stop at P-OT or N-OT		
	Alarm		Alarm signal, MECHATROLINK-III command		
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 55 (No freezing)		
Operating humidity range [\%RH]			90 or less (No condensation)		
Storage temperature range [${ }^{\circ} \mathrm{C}$]			-20 to 85 (No freezing)		
Storage humidity range [\%RH]			90 or less (No condensation)		
Insulation resistance [M M]			$10 \mathrm{M} \Omega$ (500 VDC)		
Weight [g]			900		1000

Power Supply Wiring Example: LECY \square

Three phase 200 V LECYM2- \square
LECYU2- \square

*1 For the LECY $\square 2-\mathrm{V} 5$, LECY $\square 2-\mathrm{V} 7$ and LECY $\square 2-\mathrm{V} 8$, terminals B2 and B3 are not short-circuited. Do not short-circuit these terminals.

Main Circuit Power Supply Connector * Accessory

$\left.$| Terminal name | Function | Details |
| :---: | :---: | :--- |
| L1 | Main circuit power | |
| supply | | |\quad| Connect the main circuit power supply. |
| :--- |
| Single phase 200 to $230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ Connection terminal: L1, L2 |
| Three phase 200 to $230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ Connection terminal: L1, L2, L3 | \right\rvert\,

Motor Connector * Accessory

Terminal name	Function	
U	Servo motor power (U)	
V	Servo motor power (V)	
W	Connect to motor cable (U, V, W).	

Power Supply Wire Specifications

Item	Specifications
Applicable wire size	L1, L2, L3, L1C, L2C Single wire, Twisted wire, AWG14 $\left(2.0 \mathrm{~mm}^{2}\right)$
Stripped wire length	$\xrightarrow{2}$

Control Signal Wiring Example: LECYM

*1 f shows twisted-pair wires.
*2 The 24 VDC power supply is not included. Use a 24 VDC power supply with double insulation or reinforced insulation.
*3 When using the safety function, a safety function device must be connected to the wiring that is necessary to activate the safety function. Otherwise, the servo motor is not turned ON. When not using the safety function, use the driver with the Safety Jumper Connector (provided as an accessory) inserted into the CN8.
*4 Always use line receivers to receive the output signals.
** The functions allocated to the input signals /DEC, P-OT, N-OT, /EXT1, /EXT2 and /EXT3, and the output signals /SO1, /SO2 and /SO3 can be changed by setting the parameters.
*5 It is a safety function equivalent to the STO function (IEC 61800-5-2) using the hard wire base block function (HWBB).

[^34]Applicable line receiver：
SN75ALS175 or
MC3486 manufactured
by Texas Instrument Japan Limited or equivalent
Photo－coupler output
Max．operating voltage： 30 VDC
Max．output current： 50 mA DC

FG Connect shield to connector shell．

Options

Motor cable, Motor cable for lock option, Encoder cable (LECYM/LECYU common)

Cable description

M	Motor cable
\mathbf{B}	Motor cable for lock option
E	Encoder cable (With battery case)

	Cable typed	
\mathbf{S}	Standard cable	
\mathbf{R}	Robotic cable	

Cable length (L) [m]

$\mathbf{3}$	3
$\mathbf{5}$	5
\mathbf{A}	10
\mathbf{C}	20

Direction of connector

* The cable entry direction is axis side only.

Weight

Product no.	Length [m]	Weight [g]	Note
LE-CYM-S3A-5	3	250	100 W
LE-CYM-S5A-5	5	390	
LE-CYM-SAA-5	10	750	
LE-CYM-SCA-5	20	1500	
LE-CYM-S3A-7	3	250	$\begin{gathered} 200 / \\ 400 \mathrm{~W} \end{gathered}$
LE-CYM-S5A-7	5	390	
LE-CYM-SAA-7	10	750	
LE-CYM-SCA-7	20	1500	
LE-CYM-R3A-5	3	220	100 W
LE-CYM-R5A-5	5	350	
LE-CYM-RAA-5	10	670	
LE-CYM-RCA-5	20	1300	
LE-CYM-R3A-7	3	220	$\begin{gathered} 200 / \\ 400 \mathrm{~W} \end{gathered}$
LE-CYM-R5A-7	5	350	
LE-CYM-RAA-7	10	670	
LE-CYM-RCA-7	20	1300	

LE-CYB- $\square \square A-\square:$ Motor cable for lock option

LE-CYE- $\square \square$ A: Encoder cable

Weight

Product no.	Length [m]	Weight [g]	Note
LE-CYB-S3A-5	3	240	100 W
LE-CYB-S5A-5	5	390	
LE-CYB-SAA-5	10	750	
LE-CYB-SCA-5	20	1490	
LE-CYB-S3A-7	3	240	$\begin{gathered} 200 / \\ 400 \mathrm{~W} \end{gathered}$
LE-CYB-S5A-7	5	390	
LE-CYB-SAA-7	10	750	
LE-CYB-SCA-7	20	1490	
LE-CYB-R3A-5	3	220	100 W
LE-CYB-R5A-5	5	350	
LE-CYB-RAA-5	10	670	
LE-CYB-RCA-5	20	1300	
LE-CYB-R3A-7	3	220	$\begin{gathered} 200 / \\ 400 \mathrm{~W} \end{gathered}$
LE-CYB-R5A-7	5	350	
LE-CYB-RAA-7	10	670	
LE-CYB-RCA-7	20	1300	

Weight

Product no.	Length [m]	Weight [g]
LE-CYE-S3A	3	230
LE-CYE-S5A	5	360
LE-CYE-SAA	10	680
LE-CYE-SCA	20	1250
LE-CYE-R3A	3	220
LE-CYE-R5A	5	330
LE-CYE-RAA	10	660
LE-CYE-RCA	20	1240

* LE-CYM-S \square A- \square is JZSP-CSMOD- $\square \square$-E manufactured by YASKAWA CONTROLS CO., LTD LE-CYB-S $\square A-\square$ is JZSP-CSM1 $\square-\square-E$ manufactured by YASKAWA CONTROLS CO., LTD. LE-CYE-SDA is JZSP-CSP05-DC-E manufactured by YASKAWA CONTROLS CO., LTD.

Options
I/O connector (Without cable, Connector only)

* LE-CYNA: 10126-3000PE (connector)/10326-52F0-008 (shell kit) manufactured by 3M Japan Limited or equivalent
* Conductor size: AWG24 to 30

I/O cable

Wiring

LEC-CSNA-1: Pin nos. 1 to 26

Connector pin no.		Pair no. of wire	Insulation color	Dot mark	Dot color
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{6} \\ & 4 \end{aligned}$	1	1	Orange	\square	Red
	2			\square	Black
	3	2	Light gray	\square	Red
	4			-	Black
	5	3	White	\square	Red
	6			\square	Black
	7	4	Yellow	\square	Red
	8			\square	Black
	9	5	Pink	\square	Red
	10			-	Black

Connector pin no.		Pair no. of wire	Insulation color	Dot mark	Dot color
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{4} \end{aligned}$	11	6	Orange	■	Red
	12			$\square \square$	Black
	13	7	Light gray	$\square \square$	Red
	14			-	Black
	15	8	White	■	Red
	16			$\square \square$	Black
	17	9	Yellow	-	Red
	18			■	Black
	19	10	Pink	■	Red
	20			■	Black

Connector pin no.		Pair no. of wire	Insulation color	Dot mark	Dot color
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{60} \\ & 4 \end{aligned}$	21	11	Orange	- $=$	Red
	22			■Em	Black
	23	12	Light gray	$\square \square \square$	Red
	24			- \square	Black
	25	13	White	$\square \square \square$	Red
	26			- m	Black

Cable O.D.
Dimensions/Pin No.

Product no.	\varnothing D
LEC-CSNA-1	11.1

Dimensions/Pin No.

Product no.	W	H	T	U	Pin no. n
LEC-CSNA-1	39	37.2	12.7	14	14

LECY ${ }_{U}^{M}$ Series

Options

* LEC-CYM- \square is JEPMC-W6002- $\square \square$-E manufactured by YASKAWA CONTROLS CO., LTD.
* LEC-CYU- \square is JEPMC-W6012- $\square \square-E$ manufactured by YASKAWA CONTROLS CO., LTD.

MMECHATROLINK-II cable

Weight

Product no.	Length [m]	Weight [g]
LE-CYM-J	0.5	50
LE-CYM-1	1	80
LE-CYM-3	3	200

M ${ }^{\text {MECHATROLINK-III }}$ cable

Weight

Product no.	Length $[\mathrm{m}]$	Weight $[\mathrm{g}]$
LE-CYU-L	0.2	21
LE-CYU-J	0.5	41
LE-CYU-1	1	75
LE-CYU-3	3	205

Terminating connector for $\mathbf{N}^{\text {MECHATROLNK-II }}$

LEC-CYRM

* LEC-CYRM is JEPMC-W6022-E manufactured by YASKAWA CONTROLS CO., LTD.

Options

LECYM2 LECYU2
Drivers
Setup software (SigmaWin ${ }^{\text {TM }}$) (LECYM/LECYU common)

* Please download the SigmaWin $+{ }^{\text {TM }}$ via our website.

SigmaWin $+^{T M}$ is a registered trademark or trademark of YASKAWA Electric Corporation.
Adjustment, waveform display, parameter read/write, and test operation can be performed upon a PC. Compatible PC
When using setup software (SigmaWin+ ${ }^{\top T M}$), use an IBM PC/AT compatible PC that meets the following operating conditions.
Hardware Requirements

Equipment		Setup software (SigmaWin $+^{\text {TM }}$)
$P C^{* 1,2,3,4}$	OS	Windows ${ }^{\circledR} \mathrm{XP}^{* 5}$, Windows Vista ${ }^{\circledR}$, Windows ${ }^{\circledR} 7$ (32-bit/64-bit)
	Available HD space	350 MB or more (When the software is installed, 400 MB or more is recommended.)
	Communication interface	Use USB port.
Display		XVGA monitor (1024×768 or more, "The small font is used.") 256 color or more (65536 color or more is recommended.) Connectable with the PC above
Keyboard		Connectable with the PC above
Mouse		Connectable with the PC above
Printer		Connectable with the PC above
USB cable		LEC-JZ-CVUSB*6
Other		Adobe Reader Ver. 5.0 or higher (* Except Ver. 6.0)

* 1 Windows, Windows Vista ${ }^{\circledR}$, Windows ${ }^{\circledR} 7$ are registered trademarks of Microsoft Corporation in the United States and/or other countries.
*2 On some PCs, this software may not run properly.
*3 Not compatible with 64-bit Windows ${ }^{\circledR}$ XP and 64-bit Windows Vista ${ }^{\circledR}$
*4 For Windows ${ }^{\circledR} \mathrm{XP}$, please use it by the administrator authority (When installing and using it.).
*5 In PC that uses the program to correct the problem of HotfixQ328310, it is likely to fail in the installation. In that case, please use the program to correct the problem of HotfixQ329623.
*6 Order USB cable separately.

Battery (LECYM/LECYU common) LEC-JZ-CVBAT

* JZSP-BA01 manufactured by YASKAWA CONTROLS CO., LTD.

Battery for replacement

Absolute position data is maintained by installing the battery to the battery case of the encoder cable.

Weight: 10 g

USB cable (2.5 m)

LEC-JZ - CVUSB

* JZSP-CVS06-02-E manufactured by YASKAWA CONTROLS CO., LTD.

Cable for connecting PC and driver when using the setup software (SigmaWin+ ${ }^{\text {TM }}$)
Do not use any cable other than this cable.

* The LEC-JZ-CVBAT is a single battery that uses lithium metal battery ER3V.
When transporting lithium metal batteries and devices with built-in lithium metal batteries by a method subject to UN regulations, it is necessary to apply measures according to the regulations stipulated in the United Nations Recommendations on the Transport of Dangerous Goods, the Technical Instructions (ICAO-TI) of the International Civil Aviation Organization (ICAO), and the International Maritime Dangerous Goods Code (IMDG CODE) of the International Maritime Organization (IMO). If a customer is transporting products such as shown above, it is necessary to confirm the latest regulations, or the laws and regulations of the country of transport on your own, in order to apply the proper measures. Please contact SMC sales representative for details.

Cable for safety function device (3 m)
 LEC-JZ - CVSAF

* JZSP-CVH03-03-E manufactured by YASKAWA CONTROLS CO., LTD.

Cable for connecting the driver and device when using the safety function
Do not use any cable other than this cable.

Weight: 160 g

LECYM/LECYU Series AC Servo Motor Driver Specific Product Precautions 1

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website: https://www.smcworld.com

Design / Selection

\triangle Warning

1. Be sure to apply the specified voltage.

Otherwise, malfunction or breakage may occur. If the applied voltage is lower than the specified voltage, it is possible that the load will not be able to be moved due to an internal voltage drop of the driver. Please check the operating voltage before use.
2. Do not operate the product beyond the specifications.

Otherwise, a fire, malfunction, or actuator damage may result. Please check the specifications before use.
3. Install an emergency stop circuit.

Please install an emergency stop outside of the enclosure so that the system operation can be stopped immediately and the power supply can be intercepted.
4. In order to prevent any damage caused by the breakdown or malfunction of the driver and its peripheral devices, a backup system should be established in advance by giving a multiple-layered structure or a failsafe design to the equipment, etc.
5. If a danger of human injury is expected due to abnormal heat generation, smoking, ignition, etc., of the driver and its peripheral devices, cut off the power supply of the product and the system immediately.

Handling

© Warning

1. Do not touch the inside of the driver and its peripheral devices.
Doing so may cause an electric shock or damage to the driver.
2. Do not perform the operation or setting of the product with wet hands.
Doing so may cause an electric shock.
3. Products with damage or those missing any components should not be used.
An electric shock, fire, or injury may result.
4. Use only the specified combination between the electric actuator and driver.
Failure to do so may cause damage to the actuator or the driver.
5. Be careful not to be hit by workpieces while the actuator is moving.
It may cause an injury.
6. Do not connect the power supply or power on the product before confirming the area to which the workpiece moves is safe.
The movement of the workpiece may cause an accident.
7. Do not touch the product when it is energized and for some time after power has been disconnected, as it is very hot.
Doing so may lead to a burn due to the high temperature.
8. Before installation, wiring, and maintenance, the voltage should be checked with a tester 5 minutes after the power supply has been turned off.
Otherwise, an electric shock, fire, or injury may result.

Handling

\triangle Warning

9. Static electricity may cause malfunction or break the driver. Do not touch the driver while power is supplied.
When touching the driver for maintenance, take sufficient measures to eliminate static electricity.
10. Do not use the product in an area where dust, powder dust, water, chemicals, or oil is in the air.
It will cause failure or malfunction.
11. Do not use the product in an area where a magnetic field is generated.
It will cause failure or malfunction.
12. Do not install the product in an environment containing flammable gas, explosive gas, or corrosive gas. It could lead to fire, explosion, or corrosion.
13. Radiant heat from strong heat sources, such as a furnace, direct sunlight, etc., should not be applied to the product.
It will cause failure of the driver or its peripheral devices.
14. Do not use the product in an environment subject to a temperature cycle.
It will cause failure of the driver or its peripheral devices.
15. Do not use the product in a place where surges are generated.
When there are units that generate a large amount of surge around the product (e.g. solenoid type lifters, high-frequency induction furnaces, motors, etc.), this may cause deterioration or damage to the product's internal circuit. Avoid sources of surge generation and crossed lines.
16. Do not install the product in an environment under the effect of vibrations and impacts.
It will cause failure or malfunction.
17. When a surge-generating load, such as a relay or solenoid valve, is driven directly, use a product that incorporates a surge absorption element.

Installation

© Warning

1. Install the driver and its peripheral devices on a fireproof material.
Direct installation on or near a flammable material may cause a fire.
2. Do not install the product in a place subject to vibrations and impacts.
It will cause failure or malfunction.
3. The driver should be mounted on a vertical wall in a vertical direction. Also, be sure not to cover the driver's suction/exhaust ports.
4. Install the driver and its peripheral devices on a flat surface.
If the mounting surface is distorted or uneven, an unacceptable force may be added to the housing, etc., causing problems.

LECYM/LECYU Series AC Servo Motor Driver Specific Product Precautions 2

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website: https://www.smcworld.com

Power Supply

\triangle Caution

1. Use a power supply that has low noise between lines and between the power and ground.
In cases where noise is high, an isolation transformer should be used.
2. To prevent lightning surges, appropriate measures should be taken. Ground the surge absorber for lightning separately from the grounding of the driver and its peripheral devices.

Wiring

© Warning

1. The driver will be damaged if a commercial power supply ($100 / 200 \mathrm{~V}$) is added to the driver's servo motor power (U, V, and W). Be sure to check wiring for mistakes when the power supply is turned on.
2. Connect the ends of the \mathbf{U}, V, and W wires of the motor cable correctly to the phases (U, V, and W) of the servo motor power. If these wires do not match up, the servo motor cannot be controlled.

Grounding

\triangle Warning

1. For grounding the actuator, connect the copper wire of the actuator to the driver's protective earth (PE) terminal and connect the copper wire of the driver to the earth via the control panel's protective earth (PE) terminal. Do not connect them directly to the control panel's protective earth (PE) terminal.

2. In the unlikely event that a malfunction is caused by the ground, please disconnect it.

Maintenance

© Warning

1. Perform a maintenance and inspection periodically. Confirm wiring and screws are not loose.
Loose screws or wires may cause unintentional malfunction.
2. Conduct an appropriate functional inspection after completing the maintenance and inspection.
At times where the equipment or machinery does not operate properly, conduct an emergency stop of the system. Otherwise, an unexpected malfunction may occur and it will become impossible to ensure safety. Conduct a test of the emergency stop in order to confirm the safety of the equipment.
3. Do not disassemble, modify, or repair the driver and its peripheral devices.
4. Do not put anything conductive or flammable inside the driver.
It may cause a fire.
5. Do not conduct an insulation resistance test or withstand voltage test on this product.
6. Ensure sufficient space for maintenance activities.

Design the system allowing the required space for maintenance and inspection.

Revision History

Edition C * The in-line motor type LEY $\square \mathrm{D}$ series has been added.

* The guide rod type LEYG series has been added.
* The guide rod type/in-line motor type LEYGロD series has been added
* The LECP1 series programless controller has been added.
* A standard cable has been added to the actuator cable types.
* The AC servo motor (100/200 W) type LEY $\square \square$ S series has been added.
* The LECSA/LECSB series AC servo motor driver has been added.
* Number of pages has been increased from 40 to 96 .

Edition D * Size 40 has been added to the LEY/LEYG series step motor (servo/24 VDC).

* Size 63 has been added to the AC servo motor rod type LEY series.
* The dust-tight/water-jet-proof specification has been added to the rod type.
* Sizes 25 and 32 have been added to the AC servo motor guide rod type LEYG series
* The LECPA series step motor driver has been added.
* The LEC-G series gateway unit has been added.
* The LECSC/LECSS series AC servo motor driver has been added
* UL-compliant products have been added
* The controller setting kit (LEC-W2) has been changed.
* Number of pages has been increased from 96 to 160.

Edition E * Intermediate strokes have been added to the LEY63

* Normally-closed solid state auto switches have been added
* The JXC series step motor controller has been added.
*The controller setting kit has been changed to the communication cable for controller setting (LEC-W2A).
* Errors in text have been corrected
* Number of pages has been increased from 160 to 292.

Safety Instructions
These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.

Warning:
Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.
Danger: Danger indicales a hazard with a high hevelof fisk which, if not avoided, will result in death or serious injury.

\triangle Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications.
Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.
2. Only personnel with appropriate training should operate machinery and equipment.
The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.
3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
7. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
9. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
10. An application which could have negative effects on people, property, or animals requiring special safety analysis.
11. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.
*1) ISO 4414: Pneumatic fluid power - General rules relating to systems.
ISO 4413: Hydraulic fluid power - General rules relating to systems.
IEC 60204-1: Safety of machinery - Electrical equipment of machines. (Part 1: General requirements)
ISO 10218-1: Manipulating industrial robots - Safety.
etc.

\triangle Caution

1. The product is provided for use in manufacturing industries.

The product herein described is basically provided for peaceful use in manufacturing industries.
If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary.
If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements"
Read and accept them before using the product.

Limited warranty and Disclaimer

1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first. ${ }^{* 2)}$
Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided.
This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
*2) Vacuum pads are excluded from this 1 year warranty.
A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.
Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

\triangle Caution

SMC products are not intended for use as instruments for legal metrology.
Measurement instruments that SMC manufactures or sells have not been qualified by type approval tests relevant to the metrology (measurement) laws of each country. Therefore, SMC products cannot be used for business or certification ordained by the metrology (measurement) laws of each country.

[^0]: *1 A conversion cable is also required for connecting the controller to the LEC-W2. (A conversion cable is not required for the JXC-W2.)

[^1]: *1 Top/Parallel type only

[^2]: Material: Carbon steel (Chromate treated)

[^3]: * Please consult with SMC for non-standard strokes as they are produced as special orders.

[^4]: *1 Screw lead 5 mm , Pulley ratio [4:7] equivalent lead
 *2 Only available for top mounting and right/left side parallel types

[^5]: * Apply grease on the piston rod periodically. Grease should be applied at 1 million cycles or 200 km , whichever comes first.

[^6]: * When the motor is mounted on the left or right side in parallel, the groove for auto switch on the side to which the motor is mounted is hidden.

[^7]: * Please consult with SMC for non-standard strokes as they are produced as special orders.

[^8]: *1 When ordering foot brackets, order 2 pieces per actuator.

[^9]: Use of auto switches for the guide rod type LEYG series
 Auto switches must be inserted from the front side with the rod (plate) sticking out.
 Auto switches cannot be fixed with the parts hidden behind the guide attachment (the side of the rod that sticks out).
 Please consult with SMC when using auto switches on the side of the rod that sticks out, as it is produced as a special order.

[^10]: * Please consult with SMC for non-standard strokes as they are produced as special orders.

[^11]: * Two body mounting screws are included with the support block.
 * The through holes of the LEYG-S032 cannot be used for the motor top mounting type. Use taps on the bottom.

[^12]: * Please consult with SMC for non-standard strokes as they are produced as special orders.

[^13]: * Two body mounting screws are included with the support block.
 * The through holes of the LEYG-S032 cannot be used for the motor top mounting type. Use taps on the bottom.

[^14]: * Copper and zinc materials are used for the motors, cables, controllers/drivers.

[^15]: * Apply grease on the piston rod periodically.

 Grease should be applied at 1 million cycles or 200 km , whichever comes first.

[^16]: *1 Range within which the rod can move when it returns to origin
 Make sure workpieces mounted on the rod do not interfere with the workpieces and facilities around the rod.
 *2 Position after return to origin
 *3 [] for when the direction of return to origin has changed
 *4 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.
 *5 The vent hole is the port for releasing to atmosphere. Do not apply pressure to this hole.
 Attach tubing to the vent hole and place the end of the tubing so it is not exposed to dust or water.

 For the rod end male thread, refer to page 69. For the mounting bracket dimensions, refer to page 99.

[^17]: *1 Range within which the rod can move when it returns to origin
 Make sure workpieces mounted on the rod do not interfere with the workpieces and facilities around the rod.
 *2 Position after return to origin
 *3 [] for when the direction of return to origin has changed
 *4 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.
 *5 The vent hole is the port for releasing to atmosphere. Do not apply pressure to this hole.
 Attach tubing to the vent hole and place the end of the tubing so it is not exposed to dust or water.

[^18]: * Apply grease on the piston rod periodically.

 Grease should be applied at 1 million cycles or 200 km , whichever comes first.

[^19]: *1 Range within which the rod can move
 Make sure workpieces mounted on the rod do not interfere with the workpieces and facilities around the rod.
 *2 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.
 *3 The vent hole is the port for releasing to atmosphere. Do not apply pressure to this hole.
 Attach tubing to the vent hole and place the end of the tubing so it is not exposed to dust or water.

[^20]: *1 Range within which the rod can move
 Make sure workpieces mounted on the rod do not interfere with the workpieces and facilities around the rod.
 *2 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products
 *3 The vent hole is the port for releasing to atmosphere. Do not apply pressure to this hole.
 Attach tubing to the vent hole and place the end of the tubing so it is not exposed to dust or water.

[^21]: * Please consult with SMC for non-standard strokes as they are produced as special orders.

[^22]: * When the actuator is within the "In position" range in the pushing operation, it does not stop even if HOLD signal is input.

[^23]: **ALARM" is expressed as a negative-logic circuit.

[^24]: * Refer to the LECA6 series Operation Manual for installation.

[^25]: Size
 End width L: 2.0 to $2.4[\mathrm{~mm}]$
 End thickness W: 0.5 to $0.6[\mathrm{~mm}]$

[^26]: * Parallel I/O signal is valid in auto mode. While the test function operates at manual mode, only the output is valid.

[^27]: * "*ALARM" is expressed as a negative-logic circuit.

[^28]: If pushing operation is stopped when there is no pulse deviation, the moving part of the actuator may pulsate.

[^29]: * Refer to the LECPA series Operation Manual for installation.

[^30]: To connect the teaching box (LEC-T1-3 $\square \mathrm{G} \square$) or controller setting kit (LEC-W2) to the controller, a conversion cable is required.

[^31]: *1 Connectors are included. (Refer to page 245.)

[^32]: * Can be ordered separately

[^33]: * The mounting hole position varies depending on the motor capacity.

[^34]: ＊1 \mathcal{I} shows twisted－pair wires．
 ＊2 The 24 VDC power supply is not included．Use a 24 VDC power supply with double insulation or reinforced insulation．
 ＊3 When using the safety function，a safety function device must be connected to the wiring that is necessary to activate the safety function．Otherwise，the servo motor is not turned ON．When not using the safety function，use the driver with the Safety Jumper Connector（provided as an accessory）inserted into the CN8．
 ＊4 Always use line receivers to receive the output signals．
 ＊＊The functions allocated to the input signals／DEC，P－OT，N－OT，／EXT1，／EXT2 and／EXT3，and the output signals／SO1，／SO2 and／SO3 can be changed by setting the parameters．
 ＊5 It is a safety function equivalent to the STO function（IEC 61800－5－2）using the hard wire base block function（HWBB）．

