Motorless Type

Electric Actuators

Your motor' and driver can be used together! Manufacturers of compatible

 motors: 18 companies| Mitsubishi Electric
 Corporation | YASKAWA Electric
 Corporation |
| :--- | :--- |
| SANYO DENKI CO., LTD. | OMRON Corporation |
| Panasonic Corporation | FANUC CORPORATION |
| NIDEC SANKYO CORPORATION | KEYENCE CORPORATION |
| FUJI ELECTRIC CO., LTD. | MinebeaMitsumi Inc. |
| Shinano Kenshi Co., Ltd. | ORIENTAL MOTOR Co., Ltd. |
| FASTECH Co., Ltd. | Rockwell Automation,
 Inc. (Allen-Bradley) |
| Beckhoff Automation GmbH | Siemens AG |
| Delta Electronics, Inc. | ANCA Motion |

Slider Type LEF Series

- An option without grease applied to the seal band part has been added. (Excludes the LEFB)
- Auto switches and mounting brackets have been added.
- Positioning pin holes (Body bottom 2 locations) have been added.

Ball Screw Drive/LEFS Series

Size	Stroke
$\mathbf{2 5}$	50 to 800
$\mathbf{3 2}$	50 to 1000
$\mathbf{4 0}$	150 to 1200

Belt Drive/LEFB Series

Size	Stroke
$\mathbf{2 5}$	300 to 2000
$\mathbf{3 2}$	300 to 2500
$\mathbf{4 0}$	300 to 3000

Belt Drive
LEFB Series

High Rigidity Slider Type LEJ Series

- Normally closed solid state auto switches have been added.

Ball Screw Drive/LEJS Series

Size	Stroke
$\mathbf{4 0}$	200 to 1200
$\mathbf{6 3}$	300 to 1500

Rod Type LEY Series

p. 84

- Intermediate strokes have been added to the LEY63.
- Normally closed solid state auto switches have been added.

Size	Stroke
25	30 to 400
$\mathbf{3 2}$	30 to 500
63	50 to 800

Ball Screw Drive
LEJS Series

Guide Rod Type LEYG Series p. 84

- Normally closed solid state auto switches have been added.

Motorless Type

Compatible Motors by Manufacturer (100 W/200 W/400 W equivalent)

*1 Make sure that the mounting dimensions and motor specifications are appropriate. Select a motor after checking the specifications of each model. Additionally, when considering a motor other than one of those shown above, select a motor within the range of the specifications after checking the mounting dimensions.

Series Variations

Compatible interfaces *2

*2 For details on compatible interfaces, refer to each manufacturer's catalog.

Trademark
DeviceNet ${ }^{\text {TM }}$ is a trademark of ODVA. EtherNet/IPTM is a trademark of ODVA. EtherCAT ${ }^{\circledR}$ is registered trademark and patented technology, licensed by
Beckhoff Automation GmbH, Germany.

Motorless Type Electric Actuators

Electric Actuator/Slider Type Ball Screw Drive LEFS Series

\qquad
ection
p. 5

How to Order ..p. 13
Specifications ... 14
Dimensions ..p. p. 15
Motor Mounting ..p. 27
Motor Mounting Parts... p. 29

Electric Actuator/Slider Type Belt Drive LEFB Series

Model Selection..p. 32
How to Order ..p. p. 37
Specifications ... 38
Dimensions ..p. 39
Motor Mounting .. p. 51
Motor Mounting Parts.. p. 52
Auto Switch ...p. p. 54
Specific Product Precautions...p. p. 58

Electric Actuator/High Rigidity Slider Type Ball Screw Drive LEJS Series

Model Selection... 61
How to Order ...p. p. 71
Specifications ...p. 72
Dimensions .. 73
Motor Mounting ...p. 75
Motor Mounting Parts...p. p. 76
Auto Switch .. p. 78
Specific Product Precautions..p. 82
LEJS-M (Built-in Intermediate Supports Type)
Model Selection.. 61
How to Order ... p. 74-1
Specifications .. p. 74-1
Construction ... p. 136-02
Dimensions .. p. 74-2

Electric Actuator/Rod Type
 LEY Series

Model Selection...p. p. 85
How to Order ... 91
Specifications ..p. p. 92
Dimensions ... p. 94
Electric Actuator/Guide Rod Type
LEYG Series
Model Selection.. 101
How to Order ..p. 105
Specifications .. p. 106
Dimensions ... 107
Motor Mounting ... p. 109
Motor Mounting Parts.. p. 113
Auto Switch ... p. 116-1
Specific Product Precautions.. p. 121

Motorless Type Electric Actuators

Slider Type

Ball Screw Drive LEFS Series

Motorless Type

Electric Actuator/Slider Type

Ball Screw Drive/LEFS Series
Model Selection

LEFS Series $>$ Page 13

Selection Procedure

Step 1
Check the work load-speed.
Step 2 Check the cycle time.
Step 3 Check the allowable moment.

Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.
Operating
conditions

Step 1
Check the work load-speed. <Speed-Work Load Graph>
Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications with reference to the "Speed-Work Load Graph (Guide)" on page 6.
Selection example) The LEFS $\square 40 \square$ B-200 is temporarily selected based on the graph shown on the right side.

* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2

Check the cycle time.

Calculate the cycle time using the following calculation method.
Cycle time:
T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$

- T1: Acceleration time and T3: Deceleration time can be obtained by the following equation. $\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]$
- T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4: Settling time varies depending on the motor type and load. The value below is recommended.
$\mathrm{T} 4=0.05[\mathrm{~s}]$

Calculation example)
T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}], \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{200-0.5 \cdot 300 \cdot(0.1+0.1)}{300} \\
& =0.57[\mathrm{~s}] \\
\mathrm{T} 4 & =0.05[\mathrm{~s}]
\end{aligned}
$$

Therefore, the cycle time can be obtained as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.1+0.57+0.1+0.05 \\
& =0.82[\mathbf{s}]
\end{aligned}
$$

* The conditions for the settling time vary depending on the motor or driver to be used.

Step 3 Check the guide moment.

Based on the above calculation result, the LEFS $\square 40 \square \mathrm{~B}-200$ is selected.

<Speed-Work Load Graph>
(LEFS40)

L : Stroke [mm]
... (Operating condition)
V : Speed [mm/s]
... (Operating condition)
a1: Acceleration [$\mathrm{mm} / \mathrm{s}^{2}$]
... (Operating condition) a2: Deceleration [mm/s²]
... (Operating condition)
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating
at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant
speed operation to stop
T4: Settling time [s]
Time until positioning is completed

Model Selection LEFS Series

Motorless Type

* The values shown below are allowable values of the actuator body. Do not use the actuator so that it exceeds these specification ranges.
Speed-Work Load Graph (Guide)
* The allowable speed is restricted depending on the stroke. Select it by referring to the "Allowable Stroke Speed" below.

LEFS \square 25/Ball Screw Drive

Horizontal

Vertical

LEFS \square 32/Ball Screw Drive

Horizontal

Vertical

LEFS $\square 40 /$ Ball Screw Drive

Horizontal

Vertical

Allowable Stroke Speed

Model	AC servo motor	Lead		Stroke [mm]											
		Symbol	[mm]	Up to 100	Up to 200	Up to 300	Up to 400	Up to 500	Up to 600	Up to 700	Up to 800	Up to 900	Up to 1000	Up to 1100	Up to 1200
LEFS25	100 W equivalent	H	20	1500				1200	900	700	550	-	-	-	-
		A	12	900				720	540	420	330	-	-	-	-
		B	6	450				360	270	210	160	-	-	-	-
		(Motor rotation speed)			(4500	rpm)		(3650 rpm)	(2700 rpm)	(2100 rpm)	(1650 rpm)	-	-	-	-
LEFS32	200 W equivalent	H	24	1500					1200	930	750	610	510	-	-
		A	16	1000					800	620	500	410	340	-	-
		B	8	500					400	310	250	200	170	-	-
		(Motor rotation speed)		(3750 rpm)					(3000 rpm)	(2325 rpm)	(1875 rpm)	(1537 rpm)	(1275 rpm)	-	-
LEFS40	400 W equivalent	H	30	-			1500			1410	1140	930	780	500	500
		A	20	-			1000			940	760	620	520	440	380
		B	10	-			500			470	380	310	260	220	190
		(Motor rotation speed)		-	(3000 rpm)					(2820 rpm)	(2280 rpm)	(1860 rpm)	(1560 rpm)	(1320 rpm)	(1140 rpm)

LEFS Series

Motorless Type

Work Load-Acceleration/Deceleration Graph (Guide)

LEFS $\square 25 \square$ A/Ball Screw Drive
Horizontal

LEFS $\square 25 \square$ B/Ball Screw Drive

Horizontal

LEFS $\square 25 \square$ H/Ball Screw Drive
Vertical

LEFS $\square 25 \square$ A/Ball Screw Drive
Vertical

LEFS $\square 25 \square$ B/Ball Screw Drive

Vertical

Model Selection LEFS Series

Motorless Type

Work Load-Acceleration/Deceleration Graph (Guide)

LEFS $\square 32 \square$ A/Ball Screw Drive
Horizontal

LEFS $\square 32 \square$ B/Ball Screw Drive

Horizontal

LEFS \square 32 \square H/Ball Screw Drive
Vertical

LEFS $\square 32 \square$ A/Ball Screw Drive
Vertical

LEFS $\square 32 \square$ B/Ball Screw Drive

Vertical

LEFS Series

Work Load-Acceleration/Deceleration Graph (Guide)

LEFS $\square 40 \square$ A/Ball Screw Drive

Horizontal

LEFS $\square 40 \square$ B/Ball Screw Drive

Horizontal

LEFS $\square 40 \square$ H/Ball Screw Drive

Vertical

LEFS $\square 40 \square$ A/Ball Screw Drive

Vertical

LEFS $\square 40 \square$ B/Ball Screw Drive

Vertical

........ $5000 \mathrm{~mm} / \mathrm{s}^{2} \quad-.--10000 \mathrm{~mm} / \mathrm{s}^{2} \quad-\mathrm{-}-20000 \mathrm{~mm} / \mathrm{s}^{2}$

LEFS Series

Motorless Type

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LEFS
Size: 25/32/40
Mounting orientation: Horizontal/Bottom/Wall/Vertica

Acceleration [mm/s²]: a
Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph with reference to the model, size and mounting orientation.
3. Based on the acceleration and work load, obtain the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.

$$
\alpha \mathbf{x}=\mathrm{Xc} / \mathrm{Lx}, \alpha \mathbf{y}=\mathrm{Yc} / \mathrm{Ly}, \alpha \mathbf{z}=\mathrm{Zc} / \mathrm{Lz}
$$

5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$ and $\alpha \mathbf{z}$ is 1 or less.
$\alpha x+\alpha y+\alpha z \leq 1$
When 1 is exceeded, consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LEFS40
Size: 40
Mounting orientation: Horizontal
Acceleration [mm/s²]: 3000
Work load [kg]: 20
Work load center position [mm]: Xc=0,Yc=50,Zc=200
2. Select the graphs for horizontal of the LEFS40 \square on page 10.

Mounting Orientation

3. $L x=\mathbf{2 5 0} \mathbf{~ m m}, L y=180 \mathrm{~mm}, L z=1000 \mathrm{~mm}$
4. The load factor for each direction can be obtained as follows.

$$
\alpha x=0 / 250=0
$$

$$
\alpha y=50 / 180=0.27
$$

$$
\alpha z=200 / 1000=0.2
$$

5. $\alpha x+\alpha y+\alpha z=0.47 \leq 1$

Table Accuracy (Reference Value)

Model	Traveling parallelism [mm] (Every 300 mm)	
	1) C side traveling parallelism to A side	(2) D side traveling parallelism to B side
LEFS25	0.05	0.03
LEFS32	0.05	0.03
LEFS40	0.05	0.03

* Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

* This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table.
* Check the clearance and play of the guide separately.

Overhang Displacement Due to Table Clearance (Reference Value)

Basic Type

High-Precision Type

Electric Actuator/Slider Type Ball Screw Drive

RoHS

How to Order

(1) Accuracy	
Nil	Basic type
H	High-precision type
6 Stroke [mm]	
50	50
to	to
1200	1200

* Refer to the applicable stroke table.

8 Grease application
(Seal band part)

Nil	With
\mathbf{N}	Without (Roller specification)

Applicable Stroke Table

3 Motor mounting position	
Nil	In-line
\mathbf{R}	Right side parallel
L	Left side parallel

Auto switch compatibility Nil None
C With (Includes 1 mounting bracket)

* If 2 or more are required, please order them separately. (Part no.: LEF-D-2-1 For details, refer to page 54.)
* Order auto switches separately. (For details, refer to pages 55 to 57 .)
* When "Wiris selected, the product will not come with a built-in magnet tor an auto swich, and soa mounting bracket cannot be esecured. Be sure to select an appropriate model initidly as the product camnot be changed to have auto swich compadibily ater purchase.
(5) Lead [mm]

Symbol	LEFS25	LEFS32	LEFS40
\mathbf{H}	20	24	30
\mathbf{A}	12	16	20
\mathbf{B}	6	8	10

(9) Positioning pin hole

*1 Refer to the body mounting example on page 59 for the mounting method.

- Standard

	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1100	1200
LEFS25	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
LEFS32	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-														
LEFS40	-	-	\bigcirc	\bigcirc	-	-	-	\bigcirc	-	-	-	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc

* Please consult with SMC for non-standard strokes as they are produced as special orders.

Compatible Motors

Applicable motor model			Size/Motor type														
Manufacturer	Series	Type	25						32/40								
			$\begin{array}{\|c} \hline \begin{array}{c} \text { NZ } \\ \text { Mounting } \\ \text { type Z } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { NY } \\ \text { Mounting } \\ \text { type Y } \end{gathered}$	$\begin{gathered} \mathrm{NX} \\ \text { Mounting } \\ \text { type X } \end{gathered}$	NM1 Mounting type M1	NM2 Mounting type M2	$\begin{array}{\|l\|l} \hline \text { NM3 } \\ \text { Mounting } \\ \text { type M3 } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { NZ } \\ \text { Mounting } \\ \text { type Z } \end{array}$	$\begin{array}{\|c\|} \hline \text { NY } \\ \text { Mounting } \\ \text { type Y } \\ \hline \end{array}$	NX Mounting type X	$\begin{gathered} \text { NW } \\ \text { Mounting } \\ \text { type W } \end{gathered}$	$\begin{array}{c\|} \text { NV } \\ \text { Mounting } \\ \text { type V } \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{NU} \\ \text { Mounting } \\ \text { type U } \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { NT } \\ \text { Mounting } \\ \text { type T } \end{array}$	NM1 Mounting type M1	$\begin{array}{\|c} \hline \text { NM2 } \\ \text { Mounting } \\ \text { type M2 } \\ \hline \end{array}$
Mitsubishi Electric Corporation	MELSERVO-JN	HF-KN	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
	MELSERVO-J3	HF-KP	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
	MELSERVO-J4	HG-KR	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	Σ-V	SGMJV	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	R2	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
OMRON Corporation	Sysmac G5	R88M-K	\bigcirc	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
Panasonic Corporation	MINAS-A4	MSMD	-	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
	MINAS-A5	MSMD/MHMD	-	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
FANUC CORPORATION	β is	β	\bigcirc	-	-	-	-	-		-	-	\bigcirc	-	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	MA/MH/MM	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV	SV-M/SV-B	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA5	GYS/GYB	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
	FALDIC- α	GYS	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
MinebeaMitsumi Inc.	SZ	A17PM/A23KM	-	-	-	**	-	- *3	-	-	-	-	-	-	-	\bigcirc	-
Shinano Kenshi Co., Ltd.	CSB-BZ	CSB-BZ	-	-	-	- *1	-	- *3	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	AR/AZ	AR/AZ (46 only)	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	-
	AR/AZ	AR/AZ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- ${ }^{2}$
FASTECH Co., Ltd.	Ezi-SERVO	EzM	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	- *2	-
Rockwell Automation, Inc. (Allen-Bradley)	MP-/VP-	MP/VP	-	-	-	-	-	-	-	-	- *1	-	-	-	-	-	-
	TL	TLY-A	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	\bigcirc	-	-
Beckhoff Automation GmbH	AM	AM30	\bigcirc	-	-	-	-	-	-	-	-	-	- *1	-	-	-	-
	AM	AM31	\bigcirc	-	-	-	-	-	-	-	-	-	-	- *2	-	-	-
	AM	AM80/AM81	\bigcirc	-	-	-	-	-	-	-	- *1	-	-	-	-	-	-
Siemens AG	1FK7	1FK7	-	-	\bigcirc	-	-	-	-	-	- *1	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	ECMA	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
ANCA Motion	AMD2000	Alpha	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-

*1 Motor mounting position: In-line only *2 Only size 32 is available when the motor mounting position is right (or left) side parallel.
*3 Motor mounting position: Right (or left) side parallel only

Electric Actuator/Slider Type Ball Screw Drive

Model				LEFS25			LEFS32			LEFS40		
	Stroke [mm]**			50 to 800			50 to 1000			150 to 1200		
	Work load [kg]		Horizontal	10	20	20	30	40	45	30	50	60
			Vertical	4	8	15	5	10	20	7	15	30
	Speed [mm/s]	Stroke range	Up to 400	1500	900	450	1500	1000	500	1500	1000	500
			401 to 500	1200	720	360	1500	1000	500	1500	1000	500
			501 to 600	900	540	270	1200	800	400	1500	1000	500
			601 to 700	700	420	210	930	620	310	1410	940	470
			701 to 800	550	330	160	750	500	250	1140	760	380
			801 to 900	-	-	-	610	410	200	930	620	310
			901 to 1000	-	-	-	510	340	170	780	520	260
			1001 to 1100	-	-	-	-	-	-	500	440	220
			1101 to 1200	-	-	-	-	-	-	500	380	190
	Pushing return to origin speed [mm/s]			30 or less								
	Positioning repeatability [mm]		Basic type	± 0.02								
			High-precision type	± 0.01								
	Lost motion*3 [mm]		Basic type	0.1 or less								
			High-precision type	0.05 or less								
	Ball screw specifications		Thread size [mm]	$\varnothing 10$			ه12			ه15		
			Lead [mm]	20	12	6	24	16	8	30	20	10
			Shaft length [mm]	Stroke + 150			Stroke + 185			Stroke + 235		
	Max. acceleration/deceleration [$\mathrm{mm} / \mathrm{s}^{2}$]			20000*4								
	Impact/Vibration resistance $\left[\mathrm{m} / \mathbf{s}^{2}\right]^{3} 6$			50/20								
	Actuation type			Ball screw (LEFSD), Ball screw + Belt (LEFS $\square_{L}^{\text {R }}$)								
	Guide type			Linear guide								
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40								
	Operating humidity range [\%RH]			90 or less (No condensation)								
	Actuation unit weight [kg]			0.2			0.3			0.55		
	Other inertia [$\mathrm{kg} \cdot \mathrm{cm}^{2}$]			$\begin{aligned} & \hline 0.02 \text { (LEFS25) } \\ & 0.02 \text { (LEFS25라) } \end{aligned}$			$0.08 \text { (LEFS32) }$$0.06 \text { (LEFS32Rㄹ) }$			0.08 (LEFS40)		
	Friction coefficient			0.05								
	Mechanical efficiency			0.8								
	Motor shape			$\square 40$			$\square 60$					
	Motor type			AC servo motor (100 V/200 V)								
	Rated output capacity [W]			100			200			400		
	Rated torque [$\mathrm{N} \cdot \mathrm{m}$]			0.32			0.64			1.3		
	Rated rotation [rpm]			3000								

*1 Please consult with SMC for non-standard strokes as they are produced as special orders.
*2 Do not allow collisions at either end of the table traveling distance at a speed exceeding "pushing return to origin speed."
Additionally, when running the positioning operation, do not set within 2 mm of both ends.
*3 A reference value for correcting an error in reciprocal operation
*4 Maximum acceleration/deceleration changes according to the work load.
Refer to the "Work Load-Acceleration/Deceleration Graph (Guide)" for ball screw drive on pages 7 to 9
*5 Each value is only to be used as a guide to select a motor of the appropriate capacity.
*6 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)

Weight

Model	LEFS25																			
Stroke [mm]	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800				
Product weight [kg]	1.50	1.70	1.80	2.00	2.10	2.25	2.40	2.55	2.70	2.80	2.90	3.10	3.35	3.50	3.65	3.80				
Model	LEFS32																			
Stroke [mm]	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
Product weight [kg]	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20	4.40	4.60	4.80	5.00	5.20	5.40	5.60	5.80	6.00	6.20
Model	LEFS40																			
Stroke [mm]	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1100	1200
Product weight [kg]	4.60	4.80	5.20	5.35	5.70	5.95	6.30	6.50	6.80	6.95	7.40	7.60	8.00	8.15	8.50	8.75	9.10	9.30	9.76	10.32

LEFS Series

Motorless Type

Dimensions: Ball Screw Drive
Refer to the "Motor Mounting" on page 27 for details about motor mounting and included parts.

LEFS25

Motor type: NZ, NY, NX

Motor type: NM1, NM2

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions							
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}	\mathbf{F}
$\mathbf{5 0}$	201.5	56	160	4	-	-	20
$\mathbf{1 0 0}$	251.5	106	210	4	-	-	35
$\mathbf{1 5 0}$	301.5	156	260	4	-	-	35
$\mathbf{2 0 0}$	351.5	206	310	6	2	240	35
$\mathbf{2 5 0}$	401.5	256	360	6	2	240	35
$\mathbf{3 0 0}$	451.5	306	410	8	3	360	35
$\mathbf{3 5 0}$	501.5	356	460	8	3	360	35
$\mathbf{4 0 0}$	551.5	406	510	8	3	360	35
$\mathbf{4 5 0}$	601.5	456	560	10	4	480	35
$\mathbf{5 0 0}$	651.5	506	610	10	4	480	35
$\mathbf{5 5 0}$	701.5	556	660	12	5	600	35
$\mathbf{6 0 0}$	751.5	606	710	12	5	600	35
$\mathbf{6 5 0}$	801.5	656	760	12	5	600	35
$\mathbf{7 0 0}$	851.5	706	810	14	6	720	35
$\mathbf{7 5 0}$	901.5	756	860	14	6	720	35
$\mathbf{8 0 0}$	951.5	806	910	16	7	840	35

Motor Mounting Dimensions								
Motor type	FA	FB	FC	FD	FE	FF	FG	FH
NZ/NX	M4 $\times 0.7$	8	46	30	3.5	35.5	-	-
NY	M3 $\times 0.5$	8	45	30	3.5	35.5	-	-
NM1	3.4	-	31	$22^{* 1}$	$2.5^{* 1}$	24	6.5	13.5
NM2	3.4	-	31	$22^{* 1}$	$2.5^{* 1}$	33.1	6.5	22.6

[^0]
Electric Actuator/Slider Type
 Ball Screw Drive

LEFS25

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

Dimensions		$[\mathrm{mm}]$
Stroke	G	\mathbf{H}
$\mathbf{5 0}$	100	30
$\mathbf{1 0 0}$	100	45
$\mathbf{1 5 0}$	100	45
$\mathbf{2 0 0}$	220	45
$\mathbf{2 5 0}$	220	45
$\mathbf{3 0 0}$	340	45
$\mathbf{3 5 0}$	340	45
$\mathbf{4 0 0}$	340	45
$\mathbf{4 5 0}$	460	45
$\mathbf{5 0 0}$	460	45
$\mathbf{5 5 0}$	580	45
$\mathbf{6 0 0}$	580	45
$\mathbf{6 5 0}$	580	45
$\mathbf{7 0 0}$	700	45
$\mathbf{7 5 0}$	700	45
$\mathbf{8 0 0}$	820	45

LEFS Series

LEFS32

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
$\mathbf{5 0}$	238	56	180	4	-	-
$\mathbf{1 0 0}$	288	106	230	4	-	-
$\mathbf{1 5 0}$	338	156	280	4	-	-
$\mathbf{2 0 0}$	388	206	330	6	2	300
$\mathbf{2 5 0}$	438	256	380	6	2	300
$\mathbf{3 0 0}$	488	306	430	6	2	300
$\mathbf{3 5 0}$	538	356	480	8	3	450
$\mathbf{4 0 0}$	588	406	530	8	3	450
$\mathbf{4 5 0}$	638	456	580	8	3	450
$\mathbf{5 0 0}$	688	506	630	10	4	600
$\mathbf{5 5 0}$	738	556	680	10	4	600
$\mathbf{6 0 0}$	788	606	730	10	4	600
$\mathbf{6 5 0}$	838	656	780	12	5	750
$\mathbf{7 0 0}$	888	706	830	12	5	750
$\mathbf{7 5 0}$	938	756	880	12	5	750
$\mathbf{8 0 0}$	988	806	930	14	6	900
$\mathbf{8 5 0}$	1038	856	980	14	6	900
$\mathbf{9 0 0}$	1088	906	1030	14	6	900
$\mathbf{9 5 0}$	1138	956	1080	16	7	1050
$\mathbf{1 0 0 0}$	1188	1006	1130	16	7	1050

Motor Mounting Dimensions						
Motor type	FA	FB	FC	FD	FE	FF
NZ/NT	M5 $\times 0.8$	9	70	50	5	46
NY	$\mathrm{M} 4 \times 0.7$	8	70	50	5	46
NX	$\mathrm{M} 5 \times 0.8$	9	63	$40^{* 1}$	$4.5^{* 1}$	49.7
NW/NU	$\mathrm{M} 5 \times 0.8$	9	70	50	5	47.5
NV	$\mathrm{M} 4 \times 0.7$	8	63	$40^{* 1}$	$4.5^{* 1}$	49.7
NM1	$\mathrm{M} 4 \times 0.7$	8	$\square 47.14$	$38.1^{* 1}$	$4.5^{* 1}$	21
NM2	$\mathrm{M} 4 \times 0.7$	8	$\square 50$	$36^{* 1}$	$4.5^{* 1}$	40.1

[^1]
Electric Actuator/Slider Type
 Ball Screw Drive

LEFS32

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

Dimensions	
Stroke	G
$\mathbf{5 0}]$	
$\mathbf{1 0 0}$	130
$\mathbf{1 5 0}$	130
$\mathbf{2 0 0}$	130
$\mathbf{2 5 0}$	280
$\mathbf{3 0 0}$	280
$\mathbf{3 5 0}$	430
$\mathbf{4 0 0}$	430
$\mathbf{4 5 0}$	430
$\mathbf{5 0 0}$	580
$\mathbf{5 5 0}$	580
$\mathbf{6 0 0}$	580
$\mathbf{6 5 0}$	730
$\mathbf{7 0 0}$	730
$\mathbf{7 5 0}$	730
$\mathbf{8 0 0}$	880
$\mathbf{8 5 0}$	880
$\mathbf{9 0 0}$	880
$\mathbf{9 5 0}$	1030
$\mathbf{1 0 0 0}$	1030

LEFS Series

Dimensions: Ball Screw Drive
Refer to the "Motor Mounting" on page 27 for details about motor mounting and included parts.

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
$\mathbf{1 5 0}$	389	156	328	4	-	150
$\mathbf{2 0 0}$	439	206	378	6	2	300
$\mathbf{2 5 0}$	489	256	428	6	2	300
$\mathbf{3 0 0}$	539	306	478	6	2	300
$\mathbf{3 5 0}$	589	356	528	8	3	450
$\mathbf{4 0 0}$	639	406	578	8	3	450
$\mathbf{4 5 0}$	689	456	628	8	3	450
$\mathbf{5 0 0}$	739	506	678	10	4	600
$\mathbf{5 5 0}$	789	556	728	10	4	600
$\mathbf{6 0 0}$	839	606	778	10	4	600
$\mathbf{6 5 0}$	889	656	828	12	5	750
$\mathbf{7 0 0}$	939	706	878	12	5	750
$\mathbf{7 5 0}$	989	756	928	12	5	750
$\mathbf{8 0 0}$	1039	806	978	14	6	900
$\mathbf{8 5 0}$	1089	856	1028	14	6	900
$\mathbf{9 0 0}$	1139	906	1078	14	6	900
$\mathbf{9 5 0}$	1189	956	1128	16	7	1050
$\mathbf{1 0 0 0}$	1239	1006	1178	16	7	1050
$\mathbf{1 1 0 0}$	1339	1106	1278	18	8	1200
$\mathbf{1 2 0 0}$	1439	1206	1378	18	8	1200

Motor Mounting Dimensions						
Motor type	FA	FB	FC	FD	FE	FF
NZ/NT	$\mathrm{M} 5 \times 0.8$	9	70	50	5	47.5
NY	$\mathrm{M} 4 \times 0.7$	8	70	50	5	47.5
NX	$\mathrm{M} 5 \times 0.8$	9	63	$40^{* 1}$	$4.5^{* 1}$	51
NW/NU	$\mathrm{M} 5 \times 0.8$	9	70	50	5	48.8
NV	$\mathrm{M} 4 \times 0.7$	8	63	$40^{* 1}$	$4.5^{* 1}$	51
NM1	$\mathrm{M} 4 \times 0.7$	8	$\square 47.14$	$38.1^{* 1}$	$4.5^{* 1}$	22
NM2	$\mathrm{M} 4 \times 0.7$	8	$\square 50$	$36^{* 1}$	$4.5^{* 1}$	41.4

*1 Dimensions after mounting a ring spacer (Refer to page 27.)

Electric Actuator/Slider Type
 Ball Screw Drive

LEFS40

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

Dimensi	[mm
Stroke	G
150	130
200	280
250	280
300	280
350	430
400	430
450	430
500	580
550	580
600	580
650	730
700	730
750	730
800	880
850	880
900	880
950	1030
1000	1030
1100	1180
1200	1180

LEFS Series

Motorless Type

Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 28 for details about motor mounting and included parts.

LEFS25R

Motor type: NZ, NY, NX

Motor type: NM1, NM2, NM3

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions							
Stroke	L	A	B	\mathbf{n}	\mathbf{D}	\mathbf{E}	\mathbf{G}
$\mathbf{5 0}$	210.5	56	160	4	-	-	20
$\mathbf{1 0 0}$	260.5	106	210	4	-	-	35
$\mathbf{1 5 0}$	310.5	156	260	4	-	-	35
$\mathbf{2 0 0}$	360.5	206	310	6	2	240	35
$\mathbf{2 5 0}$	410.5	256	360	6	2	240	35
$\mathbf{3 0 0}$	460.5	306	410	8	3	360	35
$\mathbf{3 5 0}$	510.5	356	460	8	3	360	35
$\mathbf{4 0 0}$	560.5	406	510	8	3	360	35
$\mathbf{4 5 0}$	610.5	456	560	10	4	480	35
$\mathbf{5 0 0}$	660.5	506	610	10	4	480	35
$\mathbf{5 5 0}$	710.5	556	660	12	5	600	35
$\mathbf{6 0 0}$	760.5	606	710	12	5	600	35
$\mathbf{6 5 0}$	810.5	656	760	12	5	600	35
$\mathbf{7 0 0}$	860.5	706	810	14	6	720	35
$\mathbf{7 5 0}$	910.5	756	860	14	6	720	35
$\mathbf{8 0 0}$	960.5	806	910	16	7	840	35

Motor Mounting Dimensions									
Motor type	FA	FB	FC	FD	FE	FF	FG	FH	FJ
NZ	$\mathrm{M} 4 \times 0.7$	7.5	46	30	3.7	11	-	-	42
NY	$\mathrm{M} 3 \times 0.5$	5.5	45	30	5	11	-	-	38
NX	$\mathrm{M} 4 \times 0.7$	7	46	30	3.7	8	-	-	42
NM1/NM2	$\varnothing 3.4$	-	31	28	-	8.5	7	3.5	42
NM3	$\varnothing 3.4$	-	31	28	-	5.5	7	3.5	42

Electric Actuator/Slider Type
 Ball Screw Drive

Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 28 for details about motor mounting and included parts.

LEFS25R

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

LEFS25L

(4.5)

[mm]

Dimensions	$[\mathrm{mm}]$	
Stroke	\mathbf{G}	\mathbf{H}
$\mathbf{5 0}$	100	30
$\mathbf{1 0 0}$	100	45
$\mathbf{1 5 0}$	100	45
$\mathbf{2 0 0}$	220	45
$\mathbf{2 5 0}$	220	45
$\mathbf{3 0 0}$	340	45
$\mathbf{3 5 0}$	340	45
$\mathbf{4 0 0}$	340	45
$\mathbf{4 5 0}$	460	45
$\mathbf{5 0 0}$	460	45
$\mathbf{5 5 0}$	580	45
$\mathbf{6 0 0}$	580	45
$\mathbf{6 5 0}$	580	45
$\mathbf{7 0 0}$	700	45
$\mathbf{7 5 0}$	700	45
$\mathbf{8 0 0}$	820	45

* For strokes of 99 mm or less, only 1 auto switch mounting bracket can be installed on the motor side.

LEFS Series

Motorless Type

Dimensions: Ball Screw Drive
Refer to the "Motor Mounting" on page 28 for details about motor mounting and included parts.

LEFS32R

Motor type: NM1, NM2

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
$\mathbf{5 0}$	245	56	180	4	-	-
$\mathbf{1 0 0}$	295	106	230	4	-	-
$\mathbf{1 5 0}$	345	156	280	4	-	-
$\mathbf{2 0 0}$	395	206	330	6	2	300
$\mathbf{2 5 0}$	445	256	380	6	2	300
$\mathbf{3 0 0}$	495	306	430	6	2	300
$\mathbf{3 5 0}$	545	356	480	8	3	450
$\mathbf{4 0 0}$	595	406	530	8	3	450
$\mathbf{4 5 0}$	645	456	580	8	3	450
$\mathbf{5 0 0}$	695	506	630	10	4	600
$\mathbf{5 5 0}$	745	556	680	10	4	600
$\mathbf{6 0 0}$	795	606	730	10	4	600
$\mathbf{6 5 0}$	845	656	780	12	5	750
$\mathbf{7 0 0}$	895	706	830	12	5	750
$\mathbf{7 5 0}$	945	756	880	12	5	750
$\mathbf{8 0 0}$	995	806	930	14	6	900
$\mathbf{8 5 0}$	1045	856	980	14	6	900
$\mathbf{9 0 0}$	1095	906	1030	14	6	900
$\mathbf{9 5 0}$	1145	956	1080	16	7	1050
$\mathbf{1 0 0 0}$	1195	1006	1130	16	7	1050

Motor Mounting Dimensions
[mm]

Motor type	FA	FB	FC	FD	FE	FF	FJ	FH
NZ/NW	$\mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	13	-	-
NY	$\mathrm{M} 4 \times 0.7$	8	70	50	4.6	13	-	-
NU	$\mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	10.6	-	-
NT	$\mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	17	-	-
NM1	$\mathrm{M} 4 \times 0.7$	5	47.14	38.2	-	5	56.4	5
NM2	$\mathrm{M} 4 \times 0.7$	8	50	38.2	-	11.5	60	7

Electric Actuator/Slider Type
 Ball Screw Drive

Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 28 for details about motor mounting and included parts.

LEFS32R

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

LEFS32R

LEFS32L

* For strokes of 99 mm or less, only 1 auto switch mounting

Dimensions	
Stroke	$\mathbf{G m}]$
$\mathbf{5 0}$	\mathbf{G}
$\mathbf{1 0 0}$	130
$\mathbf{1 5 0}$	130
$\mathbf{2 0 0}$	280
$\mathbf{2 5 0}$	280
$\mathbf{3 0 0}$	280
$\mathbf{3 5 0}$	430
$\mathbf{4 0 0}$	430
$\mathbf{4 5 0}$	430
$\mathbf{5 0 0}$	580

Dimensi	[mm]
Stroke	G
550	580
600	580
650	730
700	730
750	730
800	880
850	880
900	880
950	1030
1000	1030

LEFS Series

Refer to the "Motor Mounting" on page 28 for details about motor mounting and included parts.

LEFS40R

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
$\mathbf{1 5 0}$	403.4	156	328	4	-	150
$\mathbf{2 0 0}$	453.4	206	378	6	2	300
$\mathbf{2 5 0}$	503.4	256	428	6	2	300
$\mathbf{3 0 0}$	553.4	306	478	6	2	300
$\mathbf{3 5 0}$	603.4	356	528	8	3	450
$\mathbf{4 0 0}$	653.4	406	578	8	3	450
$\mathbf{4 5 0}$	703.4	456	628	8	3	450
$\mathbf{5 0 0}$	753.4	506	678	10	4	600
$\mathbf{5 5 0}$	803.4	556	728	10	4	600
$\mathbf{6 0 0}$	853.4	606	778	10	4	600
$\mathbf{6 5 0}$	903.4	656	828	12	5	750
$\mathbf{7 0 0}$	953.4	706	878	12	5	750
$\mathbf{7 5 0}$	1003.4	756	928	12	5	750
$\mathbf{8 0 0}$	1053.4	806	978	14	6	900
$\mathbf{8 5 0}$	1103.4	856	1028	14	6	900
$\mathbf{9 0 0}$	1153.4	906	1078	14	6	900
$\mathbf{9 5 0}$	1203.4	956	1128	16	7	1050
$\mathbf{1 0 0 0}$	1253.4	1006	1178	16	7	1050
$\mathbf{1 1 0 0}$	1353.4	1106	1278	18	8	1200
$\mathbf{1 2 0 0}$	1453.4	1206	1378	18	8	1200
$\mathbf{7}$						

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Motor Mounting Dimensions

Motor type	FA	FB	FC	FD	FE	FF
NZ/NW	$\mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	11
NY	$\mathrm{M} 4 \times 0.7$	8	70	50	4.6	11
NT	$\mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	14.5

Electric Actuator/Slider Type
 Ball Screw Drive

Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 28 for details about motor mounting and included parts.

LEFS40R

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)
LEFS40R

Dimensions	
Stroke	$\mathbf{G m}]$
$\mathbf{1 5 0}$	130
$\mathbf{2 0 0}$	280
$\mathbf{2 5 0}$	280
$\mathbf{3 0 0}$	280
$\mathbf{3 5 0}$	430
$\mathbf{4 0 0}$	430
$\mathbf{4 5 0}$	430
$\mathbf{5 0 0}$	580
$\mathbf{5 5 0}$	580
$\mathbf{6 0 0}$	580

Dimensi	[mm]
Stroke	G
650	730
700	730
750	730
800	880
850	880
900	880
950	1030
1000	1030
1100	1180
1200	1180

LEFS40L

Motor type: NZ, NY, NX, NW, NV, NU, NT, NM2
[Included parts] Hexagon

* Note for mounting a motor to the NM2 motor type

Motor mounting screws for the LEFS25 are fixed starting from the motor flange side. (Opposite of the drawing)

Motor type: NM1

[Included parts] Hexagon socket head set screw/MM (Tightening torque: TT $[\mathrm{N} \cdot \mathrm{m}]$) [Included parts] Motor side hub

* Note for mounting a hub to the NM1 motor type

When mounting the hub to the motor, make sure to position the set screw vertical to the D-cut surface of the motor shaft. (Refer to the figure shown below.)

* Motor mounting screws for the LEFS25 are fixed starting from the motor flange side. (Opposite of the drawing)

Size: 25 Hub Mounting Dimensions [mm]

Motor type	MM	TT	PD	FP
NZ	$\mathrm{M} 2.5 \times 10$	1.0	8	12.4
NY	$\mathrm{M} 2.5 \times 10$	1.0	8	12.4
NX	$\mathrm{M} 2.5 \times 10$	1.0	8	6.9
NM1	$\mathrm{M} 3 \times 4$	0.63	5	11.9
NM2	$\mathrm{M} 2.5 \times 10$	1.0	6	10

Size: 32 Hub Mounting Dimensions [mm]

Motor type	MM	TT	PD	FP
NZ	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NY	$\mathrm{M} 4 \times 12$	2.5	11	17.5
NX	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NW	$\mathrm{M} 4 \times 12$	2.5	9	13
NV	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NU	$\mathrm{M} 4 \times 12$	2.5	11	13
NT	$\mathrm{M} 3 \times 12$	1.5	12	17.5
NM1	$\mathrm{M} 4 \times 5$	1.5	6.35	5.4
NM2	$\mathrm{M} 4 \times 12$	2.5	10	12

Size: 40 Hub Mounting Dimensions [mm]

Motor type	MM	TT	PD	FP
NZ	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NY	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NX	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NW	$\mathrm{M} 4 \times 12$	2.5	9	13
NV	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NU	$\mathrm{M} 4 \times 12$	2.5	11	13
NT	$\mathrm{M} 3 \times 12$	1.5	12	17.5
NM1	$\mathrm{M} 4 \times 5$	1.5	6.35	5.1
NM2	$\mathrm{M} 4 \times 12$	2.5	10	12

Size: 32, 40

Description	Quantity							
	Motor type							
	NZ	NY	NX	NW	NV	NU	NT	
NM1	NM2							
Motor side hub	1	1	1	1	1	1	1	

*1 For screw sizes, refer to the hub mounting dimensions.

Motor Mounting：Motor Parallel

Motor type：NZ，NY，NX，NW，NU，NT，NM2

Size： 25 Pulley Mounting Dimensions［mm］

Motor type	MM	TT	PD	FP	BT
NZ／NY	$\mathrm{M} 2.5 \times 10$	1.0	8	8	19.6
NX	$\mathrm{M} 2.5 \times 10$	1.0	8	5	19.6
NM1	$\mathrm{M} 3 \times 5$	0.63	5	12.5	19.6
NM2	$\mathrm{M} 2.5 \times 10$	1.0	6	5.5	19.6
NM3	$\mathrm{M} 3 \times 5$	0.63	5	9.5	19.6

Size： 32 Pulley Mounting Dimensions $[\mathrm{mm}]$

Motor type	MM	TT	PD	FP	BT
NZ	$\mathrm{M} 3 \times 12$	1.5	14	6.6	49
NY	$\mathrm{M} 3 \times 12$	1.5	11	6.6	49
NW	$\mathrm{M} 4 \times 12$	2.5	9	6.6	49
NU	$\mathrm{M} 3 \times 12$	1.5	11	4.2	49
NT	$\mathrm{M} 3 \times 12$	1.5	12	10.6	49
NM1	$\mathrm{M} 3 \times 4$	0.63	6.35	10.6	49
NM2	$\mathrm{M} 3 \times 12$	1.5	10	5.1	49

Size： 40 Pulley Mounting Dimensions［ mm ］

Motor type	MM	TT	PD	FP	BT
NZ／NY	$\mathrm{M} 4 \times 12$	2.5	14	4.5	98.1
NW	$\mathrm{M} 4 \times 12$	2.5	9	4.5	98.1
NT	$\mathrm{M} 4 \times 12$	2.5	12	8	98.1

Included Parts List

Size： 25

Description	Quantity
Motor flange	1
Motor side pulley	1
Cover plate	1
Timing belt	1
Hexagon socket head cap screw／set screw （to secure the pulley）＊1	1
Hexagon socket head cap screw M3 $\times 8$ （to secure the motor flange）	2
Round head combination screw M3 $\times 6$	4

＊1 For screw sizes，refer to the pulley mounting dimensions．

Size：32， 40

Description	Quantity	
	$\mathbf{3 2}$	$\mathbf{4 0}$
Motor flange	1	1
Motor side pulley	1	1
Cover plate	1	1
Timing belt	1	1
Hexagon socket head cap screw／set screw （to secure the pulley）＊1	1	1
Hexagon socket head cap screw M4 $\times 12$ （to secure the motor flange）	2	4
Round head combination screw M3 $\times 6$	4	4

＊1 For screw sizes，refer to the pulley mounting dimensions．

LEFS Series

Motor Mounting Parts

Motor Flange Option

A motor can be added to the motorless specification after purchase. The applicable motor types are shown below. (Except NM1 and NM3) Use the following part numbers to select a compatible motor flange option and place an order.

How to Order

Compatible Motors

Applicable motor model			Size/Motor type											
Manufacturer	Series	Type	25				32/40							
			NZ Mounting type Z	NY Mounting type Y	NX Mounting type X	NM2 Mounting type M2	$\underset{\text { Mounting }}{N Z}$ type Z	NY Mounting type Y	NX Mounting type X	NW Mounting type W	NV Mounting type V	NU Mounting type U	NT Mounting type T	NM2 Mounting type M2
Mitsubishi Electric Corporation	MELSERVO-JN	HF-KN	\bullet	-	-	-	\bullet	-	-	-	-	-	-	-
	MELSERVO-J3	KF-KP	\bullet	-	-	-	\bullet	-	-	-	-	-	-	-
	MELSERVO-J4	HG-KR	\bullet	-	-	-	\bullet	-	-	-	-	-	-	-
YASKAWA Electric Corporation	Σ-V	SGMJV	\bullet	-	-	-	\bullet	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	R2	\bullet	-	-	-	\bullet	-	-	-	-	-	-	-
OMRON Corporation	Sysmac G5	R88M-K	\bullet	-	-	-	-	\bullet	-	-	-	-	-	-
Panasonic Corporation	MINAS-A4	MSMD	-	\bullet	-	-	-	\bullet	-	-	-	-	-	-
	MINAS-A5	MSMD/MHMD	-	\bullet	-	-	-	\bullet	-	-	-	-	-	-
FANUC CORPORATION	Bis	β	\bullet	-	-	-	$\underset{(\beta 1 \text { only) }}{\bullet}$	-	-	\bullet	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	MA/MH/MM	\bullet	-	-	-	\bullet	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV	SV-M/SV-B	\bullet	-	-	-	\bullet	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA5	GYS/GYB	\bullet	-	-	-	\bullet	-	-	-	-	-	-	-
	FALDIC- α	GYS	\bullet	-	-	-	\bullet	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	AR/AZ	AR/AZ (46 only)	-	-	-	\bullet	-	-	-	-	-	-	-	-
	AR/AZ	AR/AZ	-	-	-	-	-	-	-	-	-	-	-	\bullet -
Rockwell Automation, Inc. (Allen-Bradley)	MP-/VP-	MP/VP	-	-	-	-	-	-	$\bullet *$	-	-	-	-	-
	TL	TLY-A	\bullet	-	-	-	-	-	-	-	-	-	\bullet	-
Beckhoff Automation GmbH	AM	AM30	\bullet	-	-	-	-	-	-	-	$\bullet *$	-	-	-
	AM	AM31	\bullet	-	-	-	-	-	-	-	-	- ${ }^{2}$	-	-
	AM	AM80/AM81	\bullet	-	-	-	-	-	- 1	-	-	-	-	-
Siemens AG	1FK7	1FK7	-	-	\bullet	-	-	-	$\bullet *$	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	ECMA	\bullet	-	-	-	\bullet	-	-	-	-	-	-	-

[^2]*1 Motor mounting position: In-line only
*2 Only size 32 is available when the motor mounting position is right (or left) side parallel.

Dimensions: Motor Flange Option

Motor mounting position: In-line

Component Parts

No.	Description	Quantity
$\mathbf{1}$	Motor flange	1
$\mathbf{2}$	Hub (Motor side)	1
$\mathbf{3}$	Hexagon socket head cap screw (to secure the hub)	1
$\mathbf{4}$	Hexagon socket head cap screw (to mount the motor flange)	2
$\mathbf{5}$	Ring spacer (Only for NX, NV and NM2 of size 32, 40)	1

For NM2

$4 \times$ FA through hole,

Dimensions

[^3]
LEFS Series

Dimensions: Motor Flange Option

Component Parts

No.	Description		Quantity	
		Size		
		$\mathbf{2 5 , 3 2}$	$\mathbf{4 0}$	
$\mathbf{1}$	Motor flange	1	1	
$\mathbf{2}$	Motor pulley	1	1	
$\mathbf{3}$	Hexagon socket head cap screw (to secure the pulley)	1	1	
$\mathbf{4}$	Hexagon socket head cap screw (to mount the motor flange)	2	4	

Motor flange details

Size 25: NM2 $2 \times \varnothing$ FA Counterbore diameter $\mathbf{F G}$, depth FH

Size 32: NM2
$2 \times(\mathrm{M} 4 \times 0.7)$

Dimensions

Size	Motor type	FA	FB	FC	FD	FE	FF	FG	FH	FJ	FK	M1	M2	PD
25	NZ	$2 \times \mathrm{M} 4 \times 0.7$	7.5	46	30	3.7	11	-	-	42	-	M 2.5×10	M3 $\times 8$	8
	NY	$2 \times \mathrm{M} 3 \times 0.5$	5.5	45	30	5	11	-	-	38	-	M 2.5×10	M3 x 8	8
	NX	$2 \times \mathrm{M} 4 \times 0.7$	7	46	30	3.7	8	-	-	42	-	M 2.5×10	M3 x 8	8
	NM2	ø3.4	-	31	28	-	8.5	7	3.5	42	-	M 2.5×10	M3 $\times 8$	6
32	NZ	$2 \times \mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	13	-	-	60	-	M3 $\times 12$	M4 x 12	14
	NY	$2 \times \mathrm{M} 4 \times 0.7$	8	70	50	4.6	13	-	-	60	-	M3 $\times 12$	M4 x 12	11
	NW	$2 \times \mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	13	-	-	60	-	M 4×12	M4 x 12	9
	NU	$2 \times \mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	10.6	-	-	60	-	M3 $\times 12$	M4 x 12	11
	NT	$2 \times \mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	17	-	-	60	-	M3 $\times 12$	$\mathrm{M} 4 \times 12$	12
	NM2	M 4×0.7	8	50	38.2	-	11.5	-	-	60	7	M3 $\times 12$	$\mathrm{M} 4 \times 12$	10
40	NZ	$4 \times \mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	11	-	-	60	-	$\mathrm{M} 4 \times 12$	M4 x 12	14
	NY	$4 \times \mathrm{M} 4 \times 0.7$	8	70	50	4.6	11	-	-	60	-	$\mathrm{M} 4 \times 12$	$\mathrm{M} 4 \times 12$	14
	NW	$4 \times \mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	11	-	-	60	-	$\mathrm{M} 4 \times 12$	$\mathrm{M} 4 \times 12$	9
	NT	$4 \times \mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	14.5	-	-	60	-	$\mathrm{M} 4 \times 12$	$\mathrm{M} 4 \times 12$	12

Motorless Type

Electric Actuator/Slider Type

Belt Drive/LEFB Series
Model Selection

Selection Procedure

Step 1
Check the work load-speed.
Step 2 Check the cycle time.
Step 3 Check the allowable moment.

Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

Step 1
Check the work load-speed. <Speed-Work Load Graph>
Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications with reference to the "Speed-Work Load Graph (Guide)" on page 33.
Selection example) The LEFB40 $\square \mathbf{S}-2000$ is temporarily selected based on the graph shown on the right side.

* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2
Check the cycle time.
Calculate the cycle time using the following calculation method.
Cycle time:
T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$

- T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]$
- T2: Constant speed time can be found from the following equation.
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{s}]$
- T4: Settling time varies depending on the motor type and load. The value below is recommended.
$\mathrm{T} 4=0.05[\mathrm{~s}]$
* The conditions for the settling time vary depending on the motor or driver to be used.

Step 3 Check the guide moment.

Based on the above calculation result, the LEFB40 \square S-2000 is selected.

Calculation example)
T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=1500 / 3000=0.5[\mathrm{~s}]$,
$\mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=1500 / 3000=0.5[\mathrm{~s}]$
$T 2=\frac{L-0.5 \cdot V \cdot(T 1+T 3)}{V}$
$=\frac{2000-0.5 \cdot 1500 \cdot(0.5+0.5)}{1500}$
$=0.83$ [s]
$\mathrm{T} 4=0.05[\mathrm{~s}]$
Therefore, the cycle time can be obtained as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.5+0.83+0.5+0.05 \\
& =1.88[\mathbf{s}]
\end{aligned}
$$

<Speed-Work Load Graph> (LEFB40)

L: Stroke [mm]
... (Operating condition)
V : Speed [mm/s]
... (Operating condition)
a1: Acceleration [$\mathrm{mm} / \mathrm{s}^{2}$]
... (Operating condition)
a2: Deceleration [$\mathrm{mm} / \mathrm{s}^{2}$]
... (Operating condition)
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until positioning is completed

LEFB Series

Motorless Type

Speed-Work Load Graph (Guide)

LEFB $\square / B e l t$ Drive

Cycle Time Graph (Guide)

LEFB $\square /$ Belt Drive

LEFB25/32/40

* Cycle time is for when maximum speed.
* Maximum stroke: LEFB25: 2000 mm LEFB32: 2500 mm LEFB40: 3000 mm Do not use the actuator so that it exceeds these specification ranges.

Work Load-Acceleration/Deceleration Graph (Guide)

LEFB $\square /$ Belt Drive

LEFB25 \square (Duty ratio)

LEFB32 \square (Duty ratio)

LEFB40 \square (Duty ratio)
 workpiece overhangs in one direction．When selecting the overhang，refer to the＂Calculation of Guide Load Factor＂or the Electric Actuator Selection Software for confirmation，https：／／www．smcworld．com
Dynamic Allowable Moment

	Load overhanging direction m ：Work load［kg］ Me：Dynamic allowable moment［ $\mathrm{N} \cdot \mathrm{m}$ ］
	L ：Overhang to the work load center of gravity［mm］

Model

LEFB Series

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LEFB
Acceleration [mm/s²]: a
Size: 25/32/40
Mounting orientation: Horizontal/Bottom/Wall

Work load [kg]: m

Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph with reference to the model, size and mounting orientation.
3. Based on the acceleration and work load, obtain the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.

$$
\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z
$$

5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$ and $\alpha \mathbf{z}$ is 1 or less.
$\alpha x+\alpha y+\alpha z \leq 1$
When 1 is exceeded, consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LEFB40
Size: 40
3. $L x=\mathbf{2 5 0} \mathbf{~ m m}, L y=180 \mathrm{~mm}, \mathrm{Lz}=\mathbf{1 0 0 0} \mathbf{~ m m}$

Mounting orientation: Horizontal
Acceleration [mm/s²]: 3000
Work load [kg]: 20
Work load center position [mm]: Xc=0, Yc=50, Zc=200
2. Select the graphs for horizontal of the LEFB40 \square on page 34 .
4. The load factor for each direction can be obtained as follows.

$$
\alpha x=0 / 250=0
$$

$\alpha y=50 / 180=0.27$
$\alpha z=200 / 1000=0.2$

Table Accuracy（Reference Value）

Model	Traveling parallelism［mm］（Every 300 mm ）	
	1）C side traveling parallelism to A side	（2）D side traveling parallelism to B side
	0.05	0.03
LEFB32	0.05	0.03
LEFB40	0.05	0.03

＊Traveling parallelism does not include the mounting surface accuracy．

Table Displacement（Reference Value）

＊This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table．
＊Check the clearance and play of the guide separately．

Overhang Displacement Due to Table Clearance（Reference Value）

Basic Type

High－Precision Type

Electric Actuator/Slider Type Belt Drive
 LEFB Series

How to Order

Stroke [mm]	
$\mathbf{3 0 0}$	300
to	to
$\mathbf{3 0 0 0}$	3000

* Refer to the applicable stroke table.

(4) Equivalent lead [mm]
S

7 Positioning pin hole

Nil	Housing B bottom*1	\cdots \cdots Housing B bottom
K	Body bottom 2 locations	

*1 Refer to the body mounting example on page 59 for the mounting method.

Applicable Stroke Table
3 Motor type

Symbol	Type
NZ	Mounting type Z
NY	Mounting type Y
NX	Mounting type X
NW	Mounting type W
NV	Mounting type V
NU	Mounting type U
NT	Mounting type T
NM1	Mounting type M1
NM2	Mounting type M2

- Standard/O: Produced upon receipt of order

	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500	3000
LEFB25	\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bigcirc	\bullet	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-
LEFB32	\bigcirc	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bullet	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-
LEFB40	-	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc

* Please consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.

Compatible Motors

Applicable motor model			Size/Motor type													
Manufacturer	Series	Type	25					32/40								
			NZ Mounting type Z	NY Mounting type Y	NX Mounting type X	NM1 Mounting type M1	NM2 Mounting type M2	$\begin{gathered} \mathrm{NZ} \\ \text { Mounting } \\ \text { type Z } \end{gathered}$	NY Mounting type Y	NX Mounting type X	NW Mounting type W	$\begin{gathered} \text { NV } \\ \text { Mounting } \\ \text { type V } \end{gathered}$	NU Mounting type U	NT Mounting type T	NM1 Mounting type M1	NM2 Mounting type M2
Mitsubishi Electric Corporation	MELSERVO-JN	HF-KN	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
	MELSERVO-J3	HF-KP	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
	MELSERVO-J4	HG-KR	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	Σ-V	SGMJV	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	R2	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
OMRON Corporation	Sysmac G5	R88M-K	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
Panasonic Corporation	MINAS-A4	MSMD	-	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
	MINAS-A5	MSMD/MHMD	-	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
FANUC CORPORATION	β is	β	\bigcirc	-	-	-	-	$\underset{(B 1 \text { only })}{\bullet}$	-	-	\bigcirc	-	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	MA/MH/MM	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV	SV-M/SV-B	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA5	GYS/GYB	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
	FALDIC- α	GYS	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
MinebeaMitsumi Inc.	SZ	A17PM/A23KM	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	-
Shinano Kenshi Co., Ltd.	CSB-BZ	CSB-BZ	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	AR/AZ	AR/AZ (46 only)	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-
	AR/AZ	AR/AZ	-	-	-	-	-	-	-	-	-	-	-	-	-	\bigcirc
FASTECH Co., Ltd.	Ezi-SERVO	EzM	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	-
Rockwell Automation, Inc. (Allen-Bradley)	MP-/VP-	MP/VP	-	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-
	TL	TLY-A	\bigcirc	-	-	-	-	-	-	-	-	-	-	\bigcirc	-	-
Beckhoff Automation GmbH	AM	AM30	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	-	-	-	-
	AM	AM31	\bigcirc	-	-	-	-	-	-	-	-	-	\bigcirc	-	-	-
	AM	AM80/AM81	\bigcirc	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-
Siemens AG	1FK7	1FK7	-	-	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	ECMA	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
ANCA Motion	AMD2000	Alpha	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-

Electric Actuator/Slider Type
 Belt Drive LEFB Series
 Motorless Type

Specifications*2

- Values in this specifications table are the allowable values of the actuator body with the standard motor mounted.
- Do not use the actuator so that it exceeds these values.

Model			LEFB25	LEFB32	LEFB40
	Stroke [mm]*1		$\begin{gathered} 300,400,500 \\ 600,700,800 \\ 900,1000,(1100) \\ 1200,(1300,1400) \\ 1500,(1600,1700) \\ (1800,1900), 2000 \end{gathered}$	$\begin{gathered} 300,400,500 \\ 600,700,800 \\ 900,1000,(1100) \\ 1200,(1300,1400) \\ 1500,(1600,1700) \\ (1800,1900), 2000 \\ 2500 \end{gathered}$	$\begin{gathered} 300,400,500 \\ 600,700,800 \\ 900,1000,(1100) \\ 1200,(1300,1400) \\ 1500,(1600,1700) \\ (1800,1900), 2000 \\ 2500,3000 \end{gathered}$
	Work load [kg]	Horizontal	5	15	25
	Speed [mm/s]		2000		
	Pushing return to origin speed [mm/s]		30 or less		
	Positioning repeatability [mm]		± 0.06		
	Lost motion [mm]*3		0.1 or less		
	Equivalent lead [mm]		54		
	Max. acceleration/deceleration [mm/s ${ }^{2}$]		20000*4		
	Impact/Vibration resistance [m/s ${ }^{2}$]		50/20		
	Actuation type		Belt		
	Guide type		Linear guide		
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40		
	Operating humidity range [\%RH]		90 or less (No condensation)		
	Actuation unit weight [kg]		0.2	0.3	0.55
	Other inertia [kg.cm ${ }^{2}$]		0.1	0.2	0.25
	Friction coefficient		0.05		
	Mechanical efficiency		0.8		
	Motor shape		$\square 40$	$\square 60$	
	Motor type		AC servo motor (100 V/200 V)		
	Rated output capacity [W]		100	200	400
	Rated torque [$\mathrm{N} \cdot \mathrm{m}$]		0.32	0.64	1.3
	Rated rotation [rpm]		3000		

*1 Please consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.
*2 Do not allow collisions at either end of the table traveling distance at a speed exceeding "pushing return to origin speed."
Additionally, when running the positioning operation, do not set within 3 mm of both ends.
*3 A reference value for correcting an error in reciprocal operation
*4 Maximum acceleration/deceleration changes according to the work load.
Refer to the "Work Load-Acceleration/Deceleration Graph (Guide)" for belt drive on page 33.
*5 Each value is only to be used as a guide to select a motor of the appropriate capacity.

Weight

| Model | LEFB25 | | | | | | | | | | | | | | | | | |
| :---: |
| Stroke $[\mathrm{mm}]$ | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500 | 1600 | 1700 | 1800 | 1900 | 2000 |
| Product weight $[\mathrm{kg}]$ | 2.5 | 2.75 | 3 | 3.25 | 3.5 | 3.75 | 4 | 4.25 | 4.5 | 4.75 | 5 | 5.25 | 5.5 | 5.75 | 6 | 6.25 | 6.5 | 6.75 |

Model	LEFB32																		
Stroke [mm]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500
Product weight [kg]	4.00	4.35	4.70	5.05	5.40	5.75	6.10	6.45	6.80	7.15	7.50	7.85	8.20	8.55	8.90	9.25	9.60	9.95	11.70

Model	LEFB40																			
Stroke [mm]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500	3000
Product weight [kg]	5.72	6.17	6.62	7.07	7.52	7.97	8.42	8.87	9.32	9.77	10.22	10.67	11.12	11.57	12.02	12.47	12.92	13.32	15.62	17.87

LEFB Series

Motorless Type

Dimensions: Belt Drive
Refer to the "Motor Mounting" on page 51 for details about motor mounting and included parts.

LEFB25/Motor top mounting type

FJ \times ø A
FG depth of counterbore FH

* Spot facing is on the reverse side.

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
$\mathbf{3 0 0}$	552	306	467	6	2	340
$\mathbf{4 0 0}$	652	406	567	8	3	510
$\mathbf{5 0 0}$	752	506	667	8	3	510
$\mathbf{6 0 0}$	852	606	767	10	4	680
$\mathbf{7 0 0}$	952	706	867	10	4	680
$\mathbf{8 0 0}$	1052	806	967	12	5	850
$\mathbf{9 0 0}$	1152	906	1067	14	6	1020
$\mathbf{1 0 0 0}$	1252	1006	1167	14	6	1020
$\mathbf{1 1 0 0}$	1352	1106	1267	16	7	1190
$\mathbf{1 2 0 0}$	1452	1206	1367	16	7	1190
$\mathbf{1 3 0 0}$	1552	1306	1467	18	8	1360
$\mathbf{1 4 0 0}$	1652	1406	1567	20	9	1530
$\mathbf{1 5 0 0}$	1752	1506	1667	20	9	1530
$\mathbf{1 6 0 0}$	1852	1606	1767	22	10	1700
$\mathbf{1 7 0 0}$	1952	1706	1867	22	10	1700
$\mathbf{1 8 0 0}$	2052	1806	1967	24	11	1870
$\mathbf{1 9 0 0}$	2152	1906	2067	24	11	1870
$\mathbf{2 0 0 0}$	2252	2006	2167	26	12	2040

Motor Mounting Dimensions										
Motor type	FA	FB	FC	FD	FE	FF	FG	FH	FJ	
NZ	$\mathrm{M} 4 \times 0.7$	8	46	30	3.5	73	-	-	2	
NY	$\mathrm{M} 3 \times 0.5$	8	45	30	3.5	73	-	-	4	
NX	$\mathrm{M} 4 \times 0.7$	8	46	30	3.5	73	-	-	2	
NM1/NM2	3.4	-	31	$22^{* 1}$	$2.5^{* 1}$	73	6	21	4	

Electric Actuator/Slider Type
 Belt Drive

Dimensions: Belt Drive

Refer to the "Motor Mounting" on page 51 for details about motor mounting and included parts.

LEFB25/Motor top mounting type

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

| Dimensions | |
| :---: | :---: | [mm] | Stroke | G |
| :---: | :---: |
| $\mathbf{3 0 0}$ | 320 |
| $\mathbf{4 0 0}$ | 490 |
| $\mathbf{5 0 0}$ | 490 |
| $\mathbf{6 0 0}$ | 660 |
| $\mathbf{7 0 0}$ | 660 |
| $\mathbf{8 0 0}$ | 830 |
| $\mathbf{9 0 0}$ | 1000 |
| $\mathbf{1 0 0 0}$ | 1000 |
| $\mathbf{1 1 0 0}$ | 1170 |
| $\mathbf{1 2 0 0}$ | 1170 |
| $\mathbf{1 3 0 0}$ | 1340 |
| $\mathbf{1 4 0 0}$ | 1510 |
| $\mathbf{1 5 0 0}$ | 1510 |
| $\mathbf{1 6 0 0}$ | 1680 |
| $\mathbf{1 7 0 0}$ | 1680 |
| $\mathbf{1 8 0 0}$ | 1850 |
| $\mathbf{1 9 0 0}$ | 1850 |
| $\mathbf{2 0 0 0}$ | 2020 |

LEFB Series

Motorless Type

Dimensions: Belt Drive
Refer to the "Motor Mounting" on page 51 for details about motor mounting and included parts.

Motor type: NZ, NY, NX

Motor type: NM1, NM2

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
$\mathbf{3 0 0}$	552	306	467	6	2	340
$\mathbf{4 0 0}$	652	406	567	8	3	510
$\mathbf{5 0 0}$	752	506	667	8	3	510
$\mathbf{6 0 0}$	852	606	767	10	4	680
$\mathbf{7 0 0}$	952	706	867	10	4	680
$\mathbf{8 0 0}$	1052	806	967	12	5	850
$\mathbf{9 0 0}$	1152	906	1067	14	6	1020
$\mathbf{1 0 0 0}$	1252	1006	1167	14	6	1020
$\mathbf{1 1 0 0}$	1352	1106	1267	16	7	1190
$\mathbf{1 2 0 0}$	1452	1206	1367	16	7	1190
$\mathbf{1 3 0 0}$	1552	1306	1467	18	8	1360
$\mathbf{1 4 0 0}$	1652	1406	1567	20	9	1530
$\mathbf{1 5 0 0}$	1752	1506	1667	20	9	1530
$\mathbf{1 6 0 0}$	1852	1606	1767	22	10	1700
$\mathbf{1 7 0 0}$	1952	1706	1867	22	10	1700
$\mathbf{1 8 0 0}$	2052	1806	1967	24	11	1870
$\mathbf{1 9 0 0}$	2152	1906	2067	24	11	1870
$\mathbf{2 0 0 0}$	2252	2006	2167	26	12	2040

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Motor Mounting Dimensions

Motor Mounting													
Motor type	FA	FB	FC	FD	FE	FF	FG	FH	FJ				
NZ	$\mathrm{M} 4 \times 0.7$	8	46	30	3.5	27	-	-	2				
NY	$\mathrm{M} 3 \times 0.5$	8	45	30	3.5	27	-	-	4				
NX	$\mathrm{M} 4 \times 0.7$	8	46	30	3.5	27	-	-	2				
NM1/NM2	3.4	-	31	$22^{* 1}$	$2.5^{* 1}$	27	6	21	4				

*1 Dimensions after mounting a ring spacer (Refer to page 51.)

Electric Actuator/Slider Type
 Belt Drive

Dimensions: Belt Drive

Refer to the "Motor Mounting" on page 51 for details about motor mounting and included parts.

LEFB25U/Motor bottom mounting type

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

| Dimensions | |
| :---: | :---: | [mm] | Stroke | G |
| :---: | :---: |
| $\mathbf{3 0 0}$ | 320 |
| $\mathbf{4 0 0}$ | 490 |
| $\mathbf{5 0 0}$ | 490 |
| $\mathbf{6 0 0}$ | 660 |
| $\mathbf{7 0 0}$ | 660 |
| $\mathbf{8 0 0}$ | 830 |
| $\mathbf{9 0 0}$ | 1000 |
| $\mathbf{1 0 0 0}$ | 1000 |
| $\mathbf{1 1 0 0}$ | 1170 |
| $\mathbf{1 2 0 0}$ | 1170 |
| $\mathbf{1 3 0 0}$ | 1340 |
| $\mathbf{1 4 0 0}$ | 1510 |
| $\mathbf{1 5 0 0}$ | 1510 |
| $\mathbf{1 6 0 0}$ | 1680 |
| $\mathbf{1 7 0 0}$ | 1680 |
| $\mathbf{1 8 0 0}$ | 1850 |
| $\mathbf{1 9 0 0}$ | 1850 |
| $\mathbf{2 0 0 0}$ | 2020 |

LEFB Series

Motorless Type
Refer to the "Motor Mounting" on page 51 for details about motor mounting and included parts.
Dimensions: Belt Drive

LEFB32/Motor top mounting type

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
$\mathbf{3 0 0}$	590	306	430	6	2	400
$\mathbf{4 0 0}$	690	406	530	6	2	400
$\mathbf{5 0 0}$	790	506	630	8	3	600
$\mathbf{6 0 0}$	890	606	730	8	3	600
$\mathbf{7 0 0}$	990	706	830	10	4	800
$\mathbf{8 0 0}$	1090	806	930	10	4	800
$\mathbf{9 0 0}$	1190	906	1030	12	5	1000
$\mathbf{1 0 0 0}$	1290	1006	1130	12	5	1000
$\mathbf{1 1 0 0}$	1390	1106	1230	14	6	1200
$\mathbf{1 2 0 0}$	1490	1206	1330	14	6	1200
$\mathbf{1 3 0 0}$	1590	1306	1430	16	7	1400
$\mathbf{1 4 0 0}$	1690	1406	1530	16	7	1400
$\mathbf{1 5 0 0}$	1790	1506	1630	18	8	1600
$\mathbf{1 6 0 0}$	1890	1606	1730	18	8	1600
$\mathbf{1 7 0 0}$	1990	1706	1830	20	9	1800
$\mathbf{1 8 0 0}$	2090	1806	1930	20	9	1800
$\mathbf{1 9 0 0}$	2190	1906	2030	22	10	2000
$\mathbf{2 0 0 0}$	2290	2006	2130	22	10	2000
$\mathbf{2 5 0 0}$	2790	2506	2630	28	13	2600

Motor Mounting Dimensions						
Motor type	FA	FB	FC	FD	FE	FF
NZ	$\mathrm{M} 5 \times 0.8$	9	70	50	4	95.5
NY	$\mathrm{M} 4 \times 0.7$	8	70	50	4	95.5
NX	$\mathrm{M} 5 \times 0.8$	9	63	$40^{* 1}$	$4.5^{* 1}$	99.2
NW	$\mathrm{M} 5 \times 0.8$	9	70	50	5	96.5
NV	$\mathrm{M} 4 \times 0.7$	8	63	$40^{* 1}$	$4.5^{* 1}$	99.2
NU	$\mathrm{M} 5 \times 0.8$	9	70	50	5	96.5
NT	$\mathrm{M} 5 \times 0.8$	9	70	50	4	95.5
NM1	$\mathrm{M} 4 \times 0.7$	8	$\square 47.14$	$38.1^{* 1}$	$4.5^{* 1}$	82.5
NM2	$\mathrm{M} 4 \times 0.7$	8	$\square 50$	$36^{* 1}$	$4.5^{* 1}$	90.0

[^4]Refer to the "Motor Mounting" on page 51 for details about motor mounting and included parts.

LEFB32/Motor top mounting type

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

Dimensions	
Stroke	G
$\mathbf{3 0 0}$	380
400	380
$\mathbf{5 0 0}$	580
$\mathbf{6 0 0}$	580
$\mathbf{7 0 0}$	780
$\mathbf{8 0 0}$	780
$\mathbf{9 0 0}$	980
$\mathbf{1 0 0 0}$	980
$\mathbf{1 1 0 0}$	1180
$\mathbf{1 2 0 0}$	1180
$\mathbf{1 3 0 0}$	1380
$\mathbf{1 4 0 0}$	1380
$\mathbf{1 5 0 0}$	1580
$\mathbf{1 6 0 0}$	1580
$\mathbf{1 7 0 0}$	1780
$\mathbf{1 8 0 0}$	1780
$\mathbf{1 9 0 0}$	1980
2000	1980
$\mathbf{2 5 0 0}$	2580

LEFB Series

Motorless Type

Dimensions: Belt Drive
Refer to the "Motor Mounting" on page 51 for details about motor mounting and included parts.

LEFB32U/Motor bottom mounting type

Dimensions

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
$\mathbf{3 0 0}$	590	306	430	6	2	400
$\mathbf{4 0 0}$	690	406	530	6	2	400
$\mathbf{5 0 0}$	790	506	630	8	3	600
$\mathbf{6 0 0}$	890	606	730	8	3	600
$\mathbf{7 0 0}$	990	706	830	10	4	800
$\mathbf{8 0 0}$	1090	806	930	10	4	800
$\mathbf{9 0 0}$	1190	906	1030	12	5	1000
$\mathbf{1 0 0 0}$	1290	1006	1130	12	5	1000
$\mathbf{1 1 0 0}$	1390	1106	1230	14	6	1200
$\mathbf{1 2 0 0}$	1490	1206	1330	14	6	1200
$\mathbf{1 3 0 0}$	1590	1306	1430	16	7	1400
$\mathbf{1 4 0 0}$	1690	1406	1530	16	7	1400
$\mathbf{1 5 0 0}$	1790	1506	1630	18	8	1600
$\mathbf{1 6 0 0}$	1890	1606	1730	18	8	1600
$\mathbf{1 7 0 0}$	1990	1706	1830	20	9	1800
$\mathbf{1 8 0 0}$	2090	1806	1930	20	9	1800
$\mathbf{1 9 0 0}$	2190	1906	2030	22	10	2000
$\mathbf{2 0 0 0}$	2290	2006	2130	22	10	2000
$\mathbf{2 5 0 0}$	2790	2506	2630	28	13	2600

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Motor Mounting Dimensions						
Motor type	FA	FB	FC	FD	FE	FF
NZ	$\mathrm{M} 5 \times 0.8$	9	70	50	4	37.5
NY	$\mathrm{M} 4 \times 0.7$	8	70	50	4	37.5
NX	$\mathrm{M} 5 \times 0.8$	9	63	$40^{* 1}$	$4.5^{* 1}$	41.2
NW	$\mathrm{M} 5 \times 0.8$	9	70	50	5	38.5
NV	$\mathrm{M} 4 \times 0.7$	8	63	$40^{* 1}$	$4.5^{* 1}$	41.2
NU	$\mathrm{M} 5 \times 0.8$	9	70	50	5	38.5
NT	$\mathrm{M} 5 \times 0.8$	9	70	50	4	37.5
NM1	$\mathrm{M} 4 \times 0.7$	8	$\square 47.14$	$38.1^{* 1}$	$4.5^{* 1}$	24.5
NM2	$\mathrm{M} 4 \times 0.7$	8	$\square 50$	$36^{* 1}$	$4.5^{* 1}$	32

*1 Dimensions after mounting a ring spacer (Refer to page 51.)

Dimensions: Belt Drive

LEFB32U/Motor bottom mounting type

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

Dimensions	
Stroke	$\mathrm{Gm}]$
300	380
400	380
500	580
600	580
700	780
800	780
900	980
1000	980
1100	1180
1200	1180
1300	1380
1400	1380
1500	1580
1600	1580
1700	1780
1800	1780
1900	1980
2000	1980
2500	2580

LEFB Series

Motorless Type

Dimensions: Belt Drive
Refer to the "Motor Mounting" on page 51 for details about motor mounting and included parts.

LEFB40/Motor top mounting type

L
Belt tension adjustment bolt

> (M5: Width across flats 8)

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions

Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
$\mathbf{3 0 0}$	641.5	306	478	6	2	400
$\mathbf{4 0 0}$	741.5	406	578	6	2	400
$\mathbf{5 0 0}$	841.5	506	678	8	3	600
$\mathbf{6 0 0}$	941.5	606	778	8	3	600
$\mathbf{7 0 0}$	1041.5	706	878	10	4	800
$\mathbf{8 0 0}$	1141.5	806	978	10	4	800
$\mathbf{9 0 0}$	1241.5	906	1078	12	5	1000
$\mathbf{1 0 0 0}$	1341.5	1006	1178	12	5	1000
$\mathbf{1 1 0 0}$	1441.5	1106	1278	14	6	1200
$\mathbf{1 2 0 0}$	1541.5	1206	1378	14	6	1200
$\mathbf{1 3 0 0}$	1641.5	1306	1478	16	7	1400
$\mathbf{1 4 0 0}$	1741.5	1406	1578	16	7	1400
$\mathbf{1 5 0 0}$	1841.5	1506	1678	18	8	1600
$\mathbf{1 6 0 0}$	1941.5	1606	1778	18	8	1600
$\mathbf{1 7 0 0}$	2041.5	1706	1878	20	9	1800
$\mathbf{1 8 0 0}$	2141.5	1806	1978	20	9	1800
$\mathbf{1 9 0 0}$	2241.5	1906	2078	22	10	2000
$\mathbf{2 0 0 0}$	2341.5	2006	2178	22	10	2000
$\mathbf{2 5 0 0}$	2841.5	2506	2678	28	13	2600
$\mathbf{3 0 0 0}$	3341.5	3006	3178	32	15	3000

Motor Mounting Dimensions

Motor type	FA	FB	FC	FD	FE	FF
NZ	$\mathrm{M} 5 \times 0.8$	9	70	50	4	100
NY	$\mathrm{M} 4 \times 0.7$	8	70	50	4	100
NX	$\mathrm{M} 5 \times 0.8$	9	63	$40^{* 1}$	$4.5^{* 1}$	103.2
NW	$\mathrm{M} 5 \times 0.8$	9	70	50	5	101
NV	$\mathrm{M} 4 \times 0.7$	8	63	40	$4.5^{* 1}$	103.2
NU	$\mathrm{M} 5 \times 0.8$	9	70	50	5	101
NT	$\mathrm{M} 5 \times 0.8$	9	70	50	4	100
NM1	$\mathrm{M} 4 \times 0.7$	8	$\square 47.14$	$38.1^{* 1}$	$4.5^{* 1}$	87
NM2	$\mathrm{M} 4 \times 0.7$	8	$\square 50$	$36^{* 1}$	$4.5^{* 1}$	94

[^5]
Dimensions: Belt Drive

Refer to the "Motor Mounting" on page 51 for details about motor mounting and included parts.

LEFB40/Motor top mounting type

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

Dimensions [mm]

Stroke	G
$\mathbf{3 0 0}$	380
$\mathbf{4 0 0}$	380
$\mathbf{5 0 0}$	580
$\mathbf{6 0 0}$	580
$\mathbf{7 0 0}$	780
$\mathbf{8 0 0}$	780
$\mathbf{9 0 0}$	980
$\mathbf{1 0 0 0}$	980
$\mathbf{1 1 0 0}$	1180
$\mathbf{1 2 0 0}$	1180
$\mathbf{1 3 0 0}$	1380
$\mathbf{1 4 0 0}$	1380
$\mathbf{1 5 0 0}$	1580
$\mathbf{1 6 0 0}$	1580
$\mathbf{1 7 0 0}$	1780
$\mathbf{1 8 0 0}$	1780
$\mathbf{1 9 0 0}$	1980
$\mathbf{2 0 0 0}$	1980
$\mathbf{2 5 0 0}$	2580
$\mathbf{3 0 0 0}$	2980

LEFB Series

Motorless Type

Dimensions: Belt Drive
Refer to the "Motor Mounting" on page 51 for details about motor mounting and included parts.

Dimensions

Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
$\mathbf{3 0 0}$	641.5	306	478	6	2	400
$\mathbf{4 0 0}$	741.5	406	578	6	2	400
$\mathbf{5 0 0}$	841.5	506	678	8	3	600
$\mathbf{6 0 0}$	941.5	606	778	8	3	600
$\mathbf{7 0 0}$	1041.5	706	878	10	4	800
$\mathbf{8 0 0}$	1141.5	806	978	10	4	800
$\mathbf{9 0 0}$	1241.5	906	1078	12	5	1000
$\mathbf{1 0 0 0}$	1341.5	1006	1178	12	5	1000
$\mathbf{1 1 0 0}$	1441.5	1106	1278	14	6	1200
$\mathbf{1 2 0 0}$	1541.5	1206	1378	14	6	1200
$\mathbf{1 3 0 0}$	1641.5	1306	1478	16	7	1400
$\mathbf{1 4 0 0}$	1741.5	1406	1578	16	7	1400
$\mathbf{1 5 0 0}$	1841.5	1506	1678	18	8	1600
$\mathbf{1 6 0 0}$	1941.5	1606	1778	18	8	1600
$\mathbf{1 7 0 0}$	2041.5	1706	1878	20	9	1800
$\mathbf{1 8 0 0}$	2141.5	1806	1978	20	9	1800
$\mathbf{1 9 0 0}$	2241.5	1906	2078	22	10	2000
$\mathbf{2 0 0 0}$	2341.5	2006	2178	22	10	2000
$\mathbf{2 5 0 0}$	2841.5	2506	2678	28	13	2600
$\mathbf{3 0 0 0}$	3341.5	3006	3178	32	15	3000

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Motor Mounting Dimensions						
Motor type	FA	FB	FC	FD	FE	FF
NZ	$\mathrm{M} 5 \times 0.8$	9	70	50	4	34
NY	$\mathrm{M} 4 \times 0.7$	8	70	50	4	34
NX	$\mathrm{M} 5 \times 0.8$	9	63	$40^{* 1}$	$4.5^{* 1}$	37.2
NW	$\mathrm{M} 5 \times 0.8$	9	70	50	5	35
NV	$\mathrm{M} 4 \times 0.7$	8	63	$40^{* 1}$	$4.5^{* 1}$	37.2
NU	$\mathrm{M} 5 \times 0.8$	9	70	50	5	35
NT	$\mathrm{M} 5 \times 0.8$	9	70	50	4	34
NM1	$\mathrm{M} 4 \times 0.7$	8	$\square 47.14$	$38.1^{* 1}$	$4.5^{* 1}$	21
NM2	$\mathrm{M} 4 \times 0.7$	8	$\square 50$	$36^{* 1}$	$4.5^{* 1}$	28

[^6]
Dimensions: Belt Drive

Refer to the "Motor Mounting" on page 51 for details about motor mounting and included parts.

LEFB40U/Motor bottom mounting type

Positioning pin hole *1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

Dimensions	
Stroke	Gm
$\mathbf{3 0 0}$	380
$\mathbf{4 0 0}$	380
$\mathbf{5 0 0}$	580
$\mathbf{6 0 0}$	580
$\mathbf{7 0 0}$	780
$\mathbf{8 0 0}$	780
$\mathbf{9 0 0}$	980
$\mathbf{1 0 0 0}$	980
$\mathbf{1 1 0 0}$	1180
$\mathbf{1 2 0 0}$	1180
$\mathbf{1 3 0 0}$	1380
$\mathbf{1 4 0 0}$	1380
$\mathbf{1 5 0 0}$	1580
$\mathbf{1 6 0 0}$	1580
$\mathbf{1 7 0 0}$	1780
$\mathbf{1 8 0 0}$	1780
$\mathbf{1 9 0 0}$	1980
$\mathbf{2 0 0 0}$	1980
$\mathbf{2 5 0 0}$	2580
$\mathbf{3 0 0 0}$	2980

LEFB Series

Motorless Type

Motor Mounting

- When mounting a hub, remove all oil content, dust, and dirt adhered to the shaft and the inside of the hub.
- This product does not include the motor and motor mounting screws. (Provided by user)

Prepare a motor with a round shaft end.

- Take measures to prevent the loosening of the motor mounting screws.

Motor type: NZ, NY, NX, NW, NV, NU, NT, NM2
[Included parts] Hexagon socket head cap screw/MM

Motor type: NM1

* Note for mounting a motor to the NM2 motor type Motor mounting screws for the LEFS25 are fixed starting from the motor flange side. (Opposite of the drawing)

Motor Mounting Diagram

Motor type: NZ, NY, NW, NU, NT

Mounting procedure

1) Secure the motor hub to the motor (provided by user) with the MM hexagon socket head cap screw.
2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
3) Secure the motor to the motor flange with the motor mounting screws (provided by user).

Motor type: NX, NV, NM1, NM2

Mounting procedure

1) Secure the motor hub to the motor (provided by user) with the MM hexagon socket head cap screw (Motor type: NX, NM2) or MM hexagon socket head set screw (Motor type: NM1).
2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
3) Mount the ring spacer to the motor
4) Secure the motor to the motor flange with the motor mounting screws (provided by user).
For the LEFB25
5) Remove the motor flange, which has been temporarily mounted, from the housing B, and secure the motor to the motor flange using the motor mounting screws (that are to be prepared by user)
6) Tighten the motor flange to the housing B using motor flange mounting screws (included parts).

Match the convex part of the motor hub to the concave part of the spider that is mounted on the body side hub.

Spider [Built-in parts]

Size: 40 Hub Mounting Dimensions [mm]

Motor type	MM	TT	PD	FP
NZ	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NY	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NX	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NW	$\mathrm{M} 4 \times 12$	2.5	9	13
NV	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NU	$\mathrm{M} 4 \times 12$	2.5	11	13
NT	$\mathrm{M} 3 \times 12$	1.5	12	17.5
NM1	$\mathrm{M} 4 \times 5$	1.5	6.35	5
NM2	$\mathrm{M} 4 \times 12$	2.5	10	12

Included Parts List

Size: 32 Hub Mounting Dimensions [mm]

Motor type	MM	TT	PD	FP
NZ	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NY	$\mathrm{M} 4 \times 12$	2.5	11	17.5
NX	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NW	$\mathrm{M} 4 \times 12$	2.5	9	12.5
NV	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NU	$\mathrm{M} 4 \times 12$	2.5	11	12.5
NT	$\mathrm{M} 3 \times 12$	1.5	12	17.5
NM1	$\mathrm{M} 4 \times 5$	1.5	6.35	4.5
NM2	$\mathrm{M} 4 \times 12$	2.5	10	12

Size: 32, 40

Description	Quantity								
	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Motor side hub	1	1	1	1	1	1	1	1	1
Hexagon socket head cap screw/set screw (to secure the hub)*1	1	1	1	1	1	1	1	1	1
Ring spacer	-	-	1	-	1	-	-	1	1

[^7]Size: 25

Description	Quantity				
	Motor type				
	NZ	NY	NX	NM1	
Motor side hub	1	1	1	1	

*1 For screw sizes, refer to the hub mounting dimensions.

LEFB Series
 Motor Mounting Parts

Motor Flange Option

After purchasing the product，the motor can be changed to the motor types shown below by replacing with this option．（Except NM1） Use the following part numbers to select a compatible motor flange option and place an order．

How to Order

1 Size

$\mathbf{2 5}$	For LEF■25
$\mathbf{3 2}$	For LEFロ 32
40	For LEF $\square 40$

2 Motor type

Symbol	Type	Symbol	Type
NZ	Mounting type Z	NV	Mounting type V
NY	Mounting type Y	NU	Mounting type U
NX	Mounting type X	NT	Mounting type T
NW	Mounting type W	NM2	Mounting type M2 2

> * Select only NZ, NY, NX or NM2 for the LEFB-MF25.

Compatible Motors

Applicable motor model			Size／Motor type											
Manufacturer	Series	Type	25				32／40							
			NZ Mounting type Z	NY Mounting type Y	$\left\|\begin{array}{c} \text { NX } \\ \text { Mounting } \\ \text { type X } \end{array}\right\|$	NM2 Mounting type M2	$\left\|\begin{array}{c} N Z \\ \text { Mounting } \\ \text { type } Z \end{array}\right\|$	NY Mounting type Y	NX Mounting type X	NW Mounting type W	NV Mounting type V	NU Mounting type U	NT Mounting type T	NM2 Mounting type M2
Mitsubishi Electric Corporation	MELSERVO－JN	HF－KN	\bigcirc	－	－	－	\bigcirc	－	－	－	－	－	－	－
	MELSERVO－J3	HF－KP	\bigcirc	－	－	－	\bigcirc	－	－	－	－	－	－	－
	MELSERVO－J4	HG－KR	\bigcirc	－	－	－	\bigcirc	－	－	－	－	－	－	－
YASKAWA Electric Corporation	Σ－V	SGMJV	\bigcirc	－	－	－	\bigcirc	－	－	－	－	－	－	－
SANYO DENKI CO．，LTD．	SANMOTION R	R2	\bigcirc	－	－	－	\bigcirc	－	－	－	－	－	－	－
OMRON Corporation	Sysmac G5	R88M－K	\bigcirc	－	－	－	－	\bigcirc	－	－	－	－	－	－
Panasonic Corporation	MINAS－A4	MSMD	－	\bigcirc	－	－	－	\bigcirc	－	－	－	－	－	－
	MINAS－A5	MSMD／MHMD	－	\bigcirc	－	－	－	\bigcirc	－	－	－	－	－	－
FANUC CORPORATION	β is	β	\bigcirc	－	－	－	（ 31 only）	－	－	\bigcirc	－	－	－	－
NIDEC SANKYO CORPORATION	S－FLAG	MA／MH／MM	\bigcirc	－	－	－	\bigcirc	－	－	－	－	－	－	－
KEYENCE CORPORATION	SV	SV－M／SV－B	\bigcirc	－	－	－	\bigcirc	－	－	－	－	－	－	－
FUJI ELECTRIC CO．，LTD．	ALPHA5	GYS／GYB	\bigcirc	－	－	－	\bigcirc	－	－	－	－	－	－	－
	FALDIC－α	GYS	\bigcirc	－	－	－	\bigcirc	－	－	－	－	－	－	－
ORIENTAL MOTOR Co．，Ltd．	AR／AZ	AR／AZ（46 only）	－	－	－	\bigcirc	－	－	－	－	－	－	－	－
	AR／AZ	AR／AZ	－	－	－	－	－	－	－	－	－	－	－	\bigcirc
Rockwell Automation，Inc． （Allen－Bradley）	MP－／VP－	MP／VP	－	－	－	－	－	－	\bigcirc	－	－	－	－	－
	TL	TLY－A	\bigcirc	－	－	－	－	－	－	－	－	－	\bullet	－
Beckhoff Automation GmbH	AM	AM30	\bigcirc	－	－	－	－	－	－	－	－	－	－	－
	AM	AM31	\bigcirc	－	－	－	－	－	－	－	－	\bigcirc	－	－
	AM	AM80／AM81	\bigcirc	－	－	－	－	－	\bigcirc	－	－	－	－	－
Siemens AG	1FK7	1FK7	－	－	\bigcirc	－	－	－	\bigcirc	－	－	－	－	－
Delta Electronics，Inc．	ASDA－A2	ECMA	\bigcirc	－	－	－	\bigcirc	－	－	－	－	－	－	－

[^8]
LEFB Series

Dimensions: Motor Flange Option

Component Parts

No.	Description	Quantity
$\mathbf{1}$	Motor flange	1
2	Hub (Motor side)	1
3	Hexagon socket head cap screw (to secure the hub)	1
4	Hexagon socket head cap screw (to mount the motor flange)	2
5	Ring spacer (Only for NX, NV and NM2 of size 32, 40)	1

For NM2

$4 \times$ FA through hole,
$\xrightarrow[* \text { Spot facing is on the reverse side. }]{\text { Counterbore diameter FG, depth FH }} \xrightarrow{\text { Motor mounting surface }}$

Dimensions

Size	Motor type	FA	FB	FC	FD	FE	FF	FG	FH	FJ	FK	M1	M2	PD
25	NZ/NX	M4 x 0.7	8	46	30	3.5	31.5	-	-	57.8	65.5	M 2.5×10	M4 x 30	8
	NY	M3 x 0.5	8	45	30	3.5	31.5	-	-	57.8	65.5	$\mathrm{M} 2.5 \times 10$	M 4×30	8
	NM2	ø3.4	-	31	22*	2.5*	31.5	6	21	57.8	65.5	M 2.5×10	M 4×30	6
32	NZ	M5 x 0.8	9	70	50	4	44	-	-	69.8	83.5	M3 $\times 12$	M5 x 45	14
	NY	M4 x 0.7	8	70	50	4	44	-	-	69.8	83.5	M4 x 12	M5 x 45	11
	NX	M5 x 0.8	9	63	50	5	47.7	-	-	69.8	83.5	M4 x 12	M5 x 45	9
	NW	M5 x 0.8	9	70	50	5	45	-	-	69.8	83.5	M4 x 12	M5 x 45	9
	NV	M4 x 0.7	8	63	50	5	47.7	-	-	69.8	83.5	M4 x 12	M5 x 45	9
	NU	M5 x 0.8	9	70	50	5	45	-	-	69.8	83.5	M4 x 12	M5 x 45	11
	NT	M5 $\times 0.8$	9	70	50	4	44	-	-	69.8	83.5	M3 $\times 12$	M5 x 45	12
	NM2	M 4×0.7	8	50	36*	4.5*	38.5	-	-	69.8	83.5	M 4×12	M5 x 25	10
40	NZ	M5 x 0.8	9	70	50	4	44	-	-	89.8	85	M3 x 12	M5 x 45	14
	NY	M4 x 0.7	8	70	50	4	44	-	-	89.8	85	M3 x 12	M5 x 45	14
	NX	M5 $\times 0.8$	9	63	50	5	47.2	-	-	89.8	85	$\mathrm{M} 4 \times 12$	M5 x 45	9
	NW	M5 x 0.8	9	70	50	5	45	-	-	89.8	85	M4 x 12	M5 x 45	9
	NV	M 4×0.7	8	63	50	5	47.2	-	-	89.8	85	M 4×12	M5 x 45	9
	NU	M5 x 0.8	9	70	50	5	45	-	-	89.8	85	M4 x 12	M5 x 45	11
	NT	M5 $\times 0.8$	9	70	50	4	44	-	-	89.8	85	M3 $\times 12$	M5 x 45	12
	NM2	M 4×0.7	8	50	36*	4.5*	38	-	-	89.8	85	M 4×12	M5 x 25	10

LEF Series
 Auto Switch Mounting

Auto Switch Mounting Position

[mm]

Model						Size	A	B	Operating range
LEFS	25	45	51	4.9					
	32	55	61	3.9					
	40	79	85	5.3					

* The applicable auto switch is D-M9 (N/P/B) (W) (M/L/Z).
* The operating range is a guideline including hysteresis, not meant to be guaranteed. There may be large variations depending on the ambient environment.
* Adjust the auto switch after confirming the operating conditions in the actual setting.

Auto Switch Mounting

Rotate the bolts for auto switch mounting bracket three to four times to loosen them (Removing them is not required), and slide and remove the auto switch mounting bracket. Then, insert a switch into the groove on the mounting bracket.
As the mounting bolts for installing the product body interfere with the auto switch mounting bracket, mount the auto switch mounting bracket after installing the product body. After installing product body, tighten the bolts for the auto switch mounting bracket.

* The applicable auto switch is D-M9 (N/P/B) (W) (M/L/Z).
* The direction of the lead wire entry is specified. If it is mounted in the opposite direction, the auto switch may malfunction.
* Tighten the auto switch mounting screws (provided together with the auto switch), using a precision screwdriver with a handle diameter of approximately 5 to 6 mm .
* If more than two auto switch mounting brackets are required, please order them separately. All eight bolts for attaching the auto switch mounting bracket at the stroke end are tightened into the body when the product is shipped.
For strokes of 99 mm or less, only four bolts are tightened on the motor side.

Solid State Auto Switch Direct Mounting Type D-M9N/D-M9P/D-M9B

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Oilproof Heavy-duty Lead Wire Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square, D-M9 \square V (With indicator light)			
Auto switch model	D-M9N	D-M9P	D-M9B
Electrical entry direction	In-line		
Wiring type	3-wire		2-wire
Output type	NPN	PNP	-
Applicable load	IC circuit, Relay, PLC		24 VDC relay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)		-
Current consumption	10 mA or less		-
Load voltage	28 VDC or less	-	24 VDC (10 to 28 VDC)
Load current	40 mA or less		2.5 to 40 mA
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)		4 V or less
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC		0.8 mA or less
Indicator light	Red LED illuminates when turned ON.		
Standard	CE marking, RoHS		

Auto switch model		D-M9N	D-M9P	D-M9B
Sheath	Outside diameter $[\mathrm{mm}]$	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $[\mathrm{mm} 2]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius $[\mathrm{mm}]$ (Reference values)		17		

* Refer to the Web Catalog for solid state auto switch common specifications
* Refer to the Web Catalog for lead wire lengths.

Weight

Auto switch model		D-M9N	D-M9P	D-M9B
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

Normally Closed Solid State Auto Switch Direct Mounting Type D-M9NE(V)/D-M9PE(V)/D-M9BE(V)

Grommet

- Output signal turns on when no magnetic force is detected.
- Can be used for the actuator adopted by the solid state auto switch D-M9 series (excluding special order products)

. Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

				PLC: Pro	mable	c Controlle
D-M9 $\square E$, D-M9 \square EV (With indicator light)						
Auto switch model	D-M9NE	D-M9NEV	D-M9PE	D-M9PEV	D-M9BE	D-M9BEV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when turned ON.					
Standard	CE marking, RoHS					

Oilproof Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Sheath	Outside diameter [mm]	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $[\mathrm{mm} 2]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius $[\mathrm{mm}]$ (Reference values)		17		

* Refer to the Web Catalog for solid state auto switch common specifications
* Refer to the Web Catalog for lead wire lengths.

Weight

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})^{* 1}$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})^{* 1}$	68	63	

*1 The 1 m and 5 m options are produced upon receipt of order.

D-M9■EV

2-Color Indicator Solid State Auto Switch Direct Mounting Type

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

\triangle Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square W, D-M9 \square WV (With indicator light)			
Auto switch model	D-M9NW	D-M9PW	D-M9BW
Electrical entry direction	In-line		
Wiring type	3-wire		2-wire
Output type	NPN	PNP	-
Applicable load	IC circuit, Relay, PLC		24 VDC relay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)		-
Current consumption	10 mA or less		-
Load voltage	28 VDC or less	-	24 VDC (10 to 28 VDC)
Load current	40 mA or less		2.5 to 40 mA
Internal voltage drop	0.8 V or less at $10 \mathrm{~mA}(2 \mathrm{~V}$ or less at 40 mA$)$		4 V or less
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC		0.8 mA or less
Indicator light	Operating range Red LED illuminates. Proper operating range \qquad Green LED illuminates.		
Standard	CE marking, RoHS		

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW	D-M9PW	D-M9BW
Sheath	Outside diameter [mm]	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius $[\mathrm{mm}]$ (Reference values)				

* Refer to the Web Catalog for solid state auto switch common specifications.
* Refer to the Web Catalog for lead wire lengths.

Weight

Auto switch model				D-M9NW
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	D-M9PW	D-M9BW
	$1 \mathrm{~m}(\mathbf{M})$	14	73	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m} \mathrm{(Z)}$	68	63	

LEF Series

Electric Actuator

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website: https://www.smcworld.com

Design

\triangle Caution

1. Do not apply a load in excess of the specification limits.

Select a suitable actuator by work load and allowable moment. If the product is used outside of the specification limits, the eccentric load applied to the guide will be excessive and have adverse effects such as creating play on the guide, degrading accuracy and shortening the life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it.

This can cause a failure.

Selection

\triangle Warning

1. Do not increase the speed in excess of the specification limits.

Select a suitable actuator by the relationship of the allowable work load and speed, and the allowable speed of each stroke. If the product is used outside of the specification limits, it will have adverse effects such as creating noise, degrading accuracy and shortening the life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it. This can cause a failure.
3. When the product repeatedly cycles with partial strokes (see the table below), operate it at a full stroke at least once every dozens of cycles.
Otherwise, lubrication can run out.

Model	Partial stroke
LEF $\square \mathbf{2 5}$	65 mm or less
LEF $\square \mathbf{3 2}$	70 mm or less
LEF $\square \mathbf{4 0}$	105 mm or less

4. When external force is applied to the table, it is necessary to add external force to the work load as the total carried load for the sizing.
When a cable duct or flexible moving tube is attached to the actuator, the sliding resistance of the table increases and may lead to operational failure of the product.
5. Depending on the shape of the motor to be mounted, some of the product's interior parts (hub, spider, etc.) may be visible from the motor mounting surface. If this is undesirable, please contact your nearest sales office for details on options such as covers.

© Caution

1. Do not allow the table to hit the end of stroke.

When the driver parameters, origin or programs are set incorrectly, the table may collide against the stroke end of the actuator during operation. Check these points before use.
If the table collides against the stroke end of the actuator, the guide, ball screw, belt or internal stopper can be broken. This may lead to abnormal operation.

Handle the actuator with care when it is used in the vertical direction as the workpiece will fall freely from its own weight.
2. The actual speed of this actuator is affected by the work load and stroke.

Check the specifications with reference to the model selection section of the catalog.
3. Do not apply a load, impact or resistance in addition to the transferred load during return to origin.
4. Do not dent, scratch or cause other damage to the body and table mounting surfaces.
This may cause unevenness in the mounting surface, play in the guide or an increase in the sliding resistance.
5. Do not apply strong impact or an excessive moment while mounting a workpiece.

If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.
6. Keep the flatness of mounting surface should be within $0.1 \mathrm{~mm} / 500 \mathrm{~mm}$.

Unevenness of a workpiece or base mounted on the body of the product may cause play in the guide and an increase in the sliding resistance.
7. Do not hit the table with the workpiece in the positioning operation and positioning range.
8. Grease is applied to the dust seal band for sliding. When wiping off the grease to remove foreign matter, etc., be sure to apply it again.
9. For bottom mounting, the dust seal band may be deflected.

LEF Series

Electric Actuator Specific Product Precautions 2

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website: https://www.smcworld.com

Handling

\triangle Caution

10. When mounting the product, use screws with adequate length and tighten them with adequate torque.

Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position
Body fixed

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	$\varnothing \mathbf{A}$ $[\mathrm{mm}]$	\mathbf{L} $[\mathrm{mm}]$
LEF $\square \mathbf{2 5}$	M4	1.5	4.5	24
LEF $\square \mathbf{3 2}$	M5	3.0	5.5	30
LEF $\square \mathbf{4 0}$	M6	5.2	6.6	31

The traveling parallelism is the reference plane for the body mounting reference plane. If the traveling parallelism for a table is required, set the reference plane against parallel pins, etc.

Workpiece fixed

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	$\mathrm{L}($ Max. screw-in depth) $[\mathrm{mm}]$
LEF $\square \mathbf{2 5}$	M5 50.8	3.0	8
LEF $\square \mathbf{3 2}$	$\mathrm{M} 6 \times 1$	5.2	9
LEF $\square \mathbf{4 0}$	M8 $\times 1.25$	12.5	13

To prevent the workpiece retaining screws from touching the body, use screws that are 0.5 mm or shorter than the maximum screw-in depth. If long screws are used, they can touch the body and cause a malfunction.
12. The belt drive actuator cannot be used vertically for applications.
13. Check the specifications for the minimum speed of each actuator.
Otherwise, unexpected malfunctions, such as knocking, may occur.
14. In the case of the belt drive actuator, vibration may occur during operation at speeds within the actuator specifications, this could be caused by the operating conditions. Change the speed setting to a speed that does not cause vibration.

Maintenance

© Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months $/ 1000 \mathrm{~km} /$ 5 million cycles*1	\bigcirc	\bigcirc

*1 Select whichever comes first

- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts.
2. Loose or mechanical play in fixed parts or fixing screws.
3. Do not operate by fixing the table and moving the actuator body.

Motorless Type Electric Actuators

High Rigidity Slider Type

Ball Screw Drive LEJS Series

Motorless Type

Electric Actuator/High Rigidity Slider Type

Ball Screw Drive/LEJS Series
Model Selection

LEJS Series $>$ Page 71 LEJS-M Series $>$ Page 74-1

Selection Procedure

Step 1
Check the speed-work load.
Step 2 Check the cycle time.
Step 3 Check the allowable moment.

Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

Operating
conditions

Step 1

Check the speed-work load.
Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications with reference to the "Speed-Work Load Graph (Guide)" on page 62.
Selection example) The LEJS63 B-300 is temporarily selected based on the graph shown on the right side.

* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2 Check the cycle time.

Refer to method 1 for a rough estimate, and method 2 for a more precise value.

Method 1: Check the cycle time graph. (Page 63)

The graph is based on the maximum speed of each size.

Method 2: Calculation

Cycle time T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$

- T1 and T 3 can be obtained by the following equation.

T 1 = V/a1 [s] $\mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]$
The acceleration and deceleration values have upper limits depending on the workpiece mass and the duty ratio.
Confirm that they do not exceed the upper limit, by referring to the "Work load-Acceleration/Deceleration Graph (Guide)" on pages 64 and 65.
For the ball screw type, there is an upper limit of the speed depending on the stroke. Confirm that it does not exceed the upper limit, by referring to the specifications on page 72 .

- T2 can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4 varies depending on the motor type and load. The value below is recommended.
$\mathrm{T} 4=0.05$ [s]

Calculation example)
T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}]$,
$\mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}$
$=\frac{300-0.5 \cdot 300 \cdot(0.1+0.1)}{300}$
$=0.90$ [s]
T4 $=0.05$ [s]
Therefore, the cycle time can be obtained as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4$
$=0.1+0.90+0.1+0.05$
$=1.15$ [s$]$

* The conditions for the settling time vary depending on the motor or driver to be used.

Step 3 Check the allowable moment.

Refer to the "Dynamic Allowable Moment" graphs on pages 66 and 67 .

Selection example)
Select the LEJS63 \square B-300 from the graph on the right side.
Confirm that the external force is within the allowable external force (20 [N).
(The external force is the resistance due to cable duct, flexible trunking or air tubing.)

<Speed-Work Load Graph> (LEJS63)

L: Stroke [mm]
V: Speed [mm/s]
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right.$]
a2: Deceleration [$\mathrm{mm} / \mathrm{s}^{2}$]
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating at a constant speed
T3: Deceleration time [s]
Time from the beginining of the constant speed operation to stop
T4: Settling time [s]
Time until positioning is completed
T5: Resting time [s]
Time the product is not running
T6: Total time [s]
Total time from T1 to T5
Duty ratio: Ratio of T to T6 $\mathrm{T} \div \mathrm{T} 6 \times 100$

<Dynamic Allowable Moment> (LEJS63)

* The values shown below are allowable values of the actuator body. Do not use the actuator so that it exceeds these specification ranges.
Speed-Work Load Graph (Guide)
* The allowable speed is restricted depending on the stroke. Select it by referring to the "Allowable Stroke Speed."

LEJS40/Ball Screw Drive

Horizontal

Vertical

LEJS63/Ball Screw Drive

Horizontal

Vertical

Allowable Stroke Speed

Model	Motor	Lead		Stroke [mm]													
		Symbol	[mm]	Up to 200	Up to 300	Up to 400	Up to 500	Up to 600	Up to 700	Up to 800	Up to 900	Up to 1000	Up to 1100	Up to 1200	Up to 1300	Up to 1400	Up to 1500
LEJS40	$\begin{gathered} 100 \mathrm{~W} \\ \text { equivalent } \end{gathered}$	H	24	1800				1580	1170	910	720	580	480	410	-	-	-
		A	16	1200				1050	780	600	480	390	320	270	-	-	-
		B	8	600				520	390	300	240	190	160	130	-	-	-
		(Motor rotaion speed)		(4500 rpm)				(3938 rpm)	(2925 rpm)	(2250 rpm)	(1800 rpm)	(1463 rpm)	(1200 rpm)	(1013 rpm)	-	-	-
LEJS63	$\begin{aligned} & 200 \mathrm{~W} \\ & \text { equivalent } \end{aligned}$	H	30	-			1800			1390	1110	900	750	630	540	470	410
		A	20	-			1200			930	740	600	500	420	360	310	270
		B	10	-			600			460	370	300	250	210	180	150	130
		(Motor rotaion speed)		-	(3600 rpm)					(2790 rpm)	(2220 rpm)	(1800 rpm)	(1500 rpm)	(1260 rpm)	(1080 rpm)	(930 rpm)	(810 rpm)

LEJS Series

Motorless Type

Cycle Time Graph (Guide)

LEJS40/Ball Screw Drive

LEJS40 $\square \mathrm{H}$

LEJS40 \square A

LEJS40 $\square \mathbf{B}$

LEJS63/Ball Screw Drive

LEJS63 \square H

LEJS63 \square A

LEJS63 \square B

* These graphs show the cycle time for each acceleration/deceleration.
* These graphs show the cycle time for each stroke at the maximum speed.

Work Load-Acceleration/Deceleration Graph (Guide)

LEJS40/Ball Screw Drive: Horizontal

LEJS40■H

LEJS40 \square A

LEJS40 $\square B$

LEJS63/Ball Screw Drive: Horizontal
LEJS63 $\square \mathrm{H}$

LEJS63 \square A

LEJS63 \square B

LEJS Series

Motorless Type

Work Load-Acceleration/Deceleration Graph (Guide)

LEJS40/Ball Screw Drive: Vertical

LEJS40 $\square \mathrm{H}$

LEJS63/Ball Screw Drive: Vertical
LEJS63 $\square \mathrm{H}$

LEJS63 \square A

LEJS63 \square B

LEJS40 \square B

LEJS40 \square A

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Selection Software for confirmation, https://www.smcworld.com
$-1000 \mathrm{~mm} / \mathrm{s}^{2}$
ーー - $3000 \mathrm{~mm} / \mathrm{s}^{2}$
$5000 \mathrm{~mm} / \mathrm{s}^{2}$
$\cdots \cdots \cdot . .20000 \mathrm{~mm} / \mathrm{s}^{2}$
-

Model

LEJS40
LEJS63
(
(

Work load [kg]

Work load [kg]

LEJS Series

Motorless Type

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide
Dynamic Allowable Moment Load Factor" or the Electric Actuator Selection Software for confirmation, https://www.smcworld.com

Acceleration/Deceleration			$-1000 \mathrm{~mm} / \mathrm{s}^{2} \quad---3000 \mathrm{~mm} / \mathrm{s}^{2} \quad-5000 \mathrm{~mm} / \mathrm{s}^{2}$				
Load overhanging direction m : Work load [kg] Me: Dynamic allowable moment [$\mathrm{N} \cdot \mathrm{m}$] L : Overhang to the work load center of gravity [mm]			Model				
			LEJS40	LEJS63			
$\frac{\bar{\pi}}{3}$							
저							
		Z					

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LEJS
Acceleration [mm/s²]: a
Size: 40/63
Mounting orientation: Horizontal/Bottom/Wall/Vertical
Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph with reference to the model, size and mounting orientation.
3. Based on the acceleration and work load, obtain the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.
$\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z$
5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$ and $\alpha \mathbf{z}$ is 1 or less.
$\alpha x+\alpha y+\alpha z \leq 1$
When 1 is exceeded, consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LEJS
Size: 40
Mounting orientation: Horizontal
Acceleration [mm/s²]: 5000
Work load [kg]: 20
Work load center position [mm]: Xc=0, Yc = 50, Zc = 200
2. Select the graph on page 66, top and left side first row.
3. $L x=220 \mathrm{~mm}, \mathrm{Ly}=\mathbf{2 1 0} \mathbf{~ m m}, \mathrm{Lz}=\mathbf{4 3 0} \mathbf{~ m m}$
4. The load factor for each direction can be obtained as follows.

$$
\begin{aligned}
& \alpha x=0 / 220=0 \\
& \alpha y=50 / 210=0.24 \\
& \alpha z=200 / 430=0.47
\end{aligned}
$$

5. $\alpha x+\alpha y+\alpha z=0.71 \leq 1$

LEJS Series

Table Accuracy (Reference Value)

Model	Traveling parallelism [mm] (Every 300 mm)	
	1) C side traveling parallelism to A side	(2) D side traveling parallelism to B side
LEJS40	0.05	0.03
LEJS63	0.05	0.03

* Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

[^9]
Electric Actuator/High Rigidity Slider Type Ball Screw Drive

 LEJS Series LeJs40,63RoHS

How to Order

LEJS H 40 NZ A-500

* Please consult with SMC for non-standard strokes as they are produced as special orders.

For auto switches, refer to pages 78 to 81.

Compatible Motors

Applicable motor model			Size/Motor type									
Manufacturer	Series	Type	40			63						
					NX Mounting type X	Mounting type Z		NX Mounting type X	NW Mounting type W			NT Mounting type T
Mitsubishi Electric Corporation	MELSERVO-JN	HF-KN	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-
	MELSERVO-J3	KF-KP	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-
	MELSERVO-J4	HG-KR	\bigcirc	-	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	Σ-V	SGMJV	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	R2	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-
OMRON Corporation	Sysmac G5	R88M-K	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-
Panasonic Corporation	MINAS-A4	MSMD	-	\bigcirc	-	-	\bigcirc	-	-	-	-	-
	MINAS-A5	MSMD/MHMD	-	\bigcirc	-	-	\bigcirc	-	-	-	-	-
FANUC CORPORATION	β is	β	\bigcirc	-	-	($\beta 1$ only)	-	-	\bigcirc	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	MA/MH/MM	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-
KEYENCE CORPORATION	SV	SV-M/SV-B	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA5	GYS/GYB	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-
	FALDIC- α	GYS	-	-	-	\bigcirc	-	-	-	-	-	-
Rockwell Automation, Inc. (Allen-Bradley)	MP-/VP-	MP/VP	-	-	-	-	-	\bigcirc	-	-	-	-
	TL	TLY-A	\bullet	-	-	-	-	-	-	-	-	\bullet
Beckhoff Automation GmbH	AM	AM30	\bigcirc	-	-	-	-	-	-	\bigcirc	-	-
	AM	AM31	\bigcirc	-	-	-	-	-	-	-	-	-
	AM	AM80/AM81	-	-	-	-	-	-	-	-	-	-
Siemens AG	1FK7	1FK7	-	-	-	-	-	\bigcirc	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	ECMA	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-
ANCA Motion	AMD2000	Alpha	\bigcirc	-	-	-	-	-	-	-	-	-

Specifications

- Values in this specifications table are the allowable values of the actuator body with the standard motor mounted.
- Do not use the actuator so that it exceeds these values.

Model				LEJS40			LEJS63		
	Stroke [mm]*1			$\begin{gathered} 200,300,400,500,600,700,800 \\ 900,1000,1200 \end{gathered}$			$\begin{gathered} 300,400,500,600,700,800,900 \\ 1000,1200,1500 \end{gathered}$		
	Work load [kg]*2		Horizontal	15	30	55	30	45	85
			Vertical	3	5	10	6	10	20
	Speed*3 [mm/s]	Stroke range	Up to 500	1800	1200	600	1800	1200	600
			501 to 600	1580	1050	520			
			601 to 700	1170	780	390			
			701 to 800	910	600	300	1390	930	460
			801 to 900	720	480	240	1110	740	370
			901 to 1000	580	390	190	900	600	300
			1001 to 1100	480	320	160	750	500	250
			1101 to 1200	410	270	130	630	420	210
			1201 to 1300	-	-	-	540	360	180
			1301 to 1400	-	-	-	470	310	150
			1401 to 1500	-	-	-	410	270	130
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			20000					
	Positioning repeatability [mm]		Basic type	± 0.02					
			High-precision type	± 0.01					
	Lost motion [mm]*4		Basic type	0.1 or less					
			High-precision type	0.05 or less					
	Ball screw specifications		Thread size [mm]	$\varnothing 12$			$\varnothing 15$		
			Lead [mm]	24	16	8	30	20	10
			Shaft length [mm]	Stroke + 118.5			Stroke + 126.5		
	Impact/Vibration resistance [m/s ${ }^{2}$] ${ }^{\text {5 }}$			50/20					
	Actuation type			Ball screw					
	Guide type			Linear guide					
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40					
	Operating humidity range [\%RH]			90 or less (No condensation)					
	Actuation unit weight [kg]			0.86			1.37		
	Other inertia [kg.cm²]			0.031			0.129		
	Friction coefficient			0.05					
	Mechanical efficiency			0.8					
흥	Motor shape			$\square 40$			$\square 60$		
은	Motor type			AC servo motor (100 V/200 V)					
\%	Rated output capacity [W]			100			200		
\%	Rated torque [$\mathrm{N} \cdot \mathrm{m}$]			0.32			0.64		
	Rated rotation [rpm]			3000			3000		

*1 Please consult with SMC for non-standard strokes as they are produced as special orders.
*2 Check the "Speed-Work Load Graph (Guide)" on page 62.
*3 The allowable speed changes according to the stroke.
*4 A reference value for correcting an error in reciprocal operation
*5 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*6 Each value is only to be used as a guide to select a motor of the appropriate capacity.

* Sensor magnet position is located in the table center.

For detailed dimensions, refer to the "Auto Switch Mounting Position."

* Do not allow collisions at either end of the table traveling distance.

Additionally, when running the positioning operation, do not set within 2 mm of both ends.

* Please consult with SMC for the manufacture of intermediate strokes.
(LEJS40/Manufacturable stroke range: 200 to 1200 mm , LEJS63/Manufacturable stroke range: 300 to 1500 mm)

Weight

Model	LEJS40									
Stroke [mm]	200	300	400	500	600	700	800	900	1000	1200
Product weight [kg]	5.0	5.8	6.5	7.3	8.1	8.8	9.6	10.4	11.1	12.7
Model	LEJS63									
Stroke [mm]	300	400	500	600	700	800	900	1000	1200	1500
Product weight [kg]	10.4	11.7	12.9	14.2	15.4	16.7	17.9	19.1	21.6	25.4

LEJS Series

Motorless Type

Dimensions: Ball Screw Drive
Refer to the "Motor Mounting" on page 75 for details about motor mounting and included parts.

LEJS40

*1 When mounting the actuator using the body mounting reference plane, use a pin. Set the height of the pin to be 5 mm or more because of round chamfering. (Recommended height 6 mm)

Dimensions			[mm]	
Model	n	C	D	E
LEJS40N $\square \square-200$	6	1	200	80
LEJS40N $\square \square$-300	6	1	200	180
LEJS40N $\square \square$-400	8	2	400	80
LEJS40N $\square \square-500$	8	2	400	180
LEJS40N $\square \square-600$	10	3	600	80
LEJS40N $\square \square$-700	10	3	600	180
LEJS40N $\square \square$-800	12	4	800	80
LEJS40N $\square \square$-900	12	4	800	180
LEJS40N $\square \square-1000$	14	5	1000	80
LEJS40N $\square \square-1200$	16	6	1200	80

Motor Mounting Dimensions [mm]

Motor type	n	FA	FB	FD
NZ/Mounting type Z	2	$\mathrm{M} 4 \times 0.7$	7	46
NY/Mounting type \mathbf{Y}	4	$\mathrm{M} 3 \times 0.5$	6	45
NX/Mounting type X	2	$\mathrm{M} 4 \times 0.7$	7	46

Refer to the "Motor Mounting" on page 75 for details about motor mounting and included parts.

LEJS63

*1 When mounting the actuator using the body mounting reference plane, use a pin. Set the height of the pin to be 5 mm or more because of round chamfering. (Recommended height 6 mm)

Dimensions				[mm]
Model	n	C	D	E
LEJS63NDC-300	6	1	200	180
LEJS63ND]-400	8	2	400	80
LEJS63ND]-500	8	2	400	180
LEJS63ND]-600	10	3	600	80
LEJS63ND]-700	10	3	600	180
LEJS63ND]-800	12	4	800	80
LEJS63ND-900	12	4	800	180
LEJS63N-D-1000	14	5	1000	80
LEJS63N-D-1200	16	6	1200	80
LEJS63N-D-1500	18	7	1400	180

Motor Mounting Dimensions			
Motor type	FA	FB	FD
NZ/Mounting type Z	M 5×0.8	7	70
NY/Mounting type \mathbf{Y}	$\mathrm{M} 4 \times 0.7$	6	70
NX/Mounting type \mathbf{X}	$\mathrm{M} 5 \times 0.8$	6	63
NW/Mounting type \mathbf{W}	$\mathrm{M} 5 \times 0.8$	7	70
NV/Mounting type \mathbf{V}	$\mathrm{M} 4 \times 0.7$	6	63
NU/Mounting type \mathbf{U}	$\mathrm{M} 5 \times 0.8$	7	70
NT/Mounting type T	$\mathrm{M} 5 \times 0.8$	7	70

How to Order

LEJS H 63

(3)

NZ	Mounting type Z
NY	Mounting type Y
NX	Mounting type X
NW	Mounting type W
NV	Mounting type V
NU	Mounting type U
NT	Mounting type T

(4) Lead [mm]

H	30
A	20
B	10

Stroke $[\mathrm{mm}]^{* 1}$-Standard OProduced upor receipt of order | 790 | 890 | 990 | 1190 | 1490 | 1790 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | \bullet | 0 | 0 | \bigcirc | 0 |

*1 Please consult with SMC for non-standard strokes as they are produced as special orders.

Built-in intermediate supports
M \quad Built-in intermediate supports

Specifications

Lead [mm]			30	20	10
Speed [mm/s]	Stroke range	790	1800	1200	600
		890			
		990			
		1190			
		1490			
		1790			

For the model selection method, refer to page 61. Specifications other than those listed are the same as the standard product. Refer to page 72 for details.

For auto switches, refer to pages 78 to 81.

Compatible Motors

Applicable motor model			Size/Motor type									
Manufacturer	Series	Type	40			63						
			NZ Mounting type Z	NY Mounting type Y	NX Mounting type X	NZ Mounting type Z	NY Mounting type Y	NX Mounting type X	NW type W	NV Mounting type V	NU Mounting type U	NT Mounting type T
Mitsubishi Electric Corporation	MELSERVO-JN	HF-KN	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-
	MELSERVO-J3	KF-KP	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-
	MELSERVO-J4	HG-KR	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-
YASKAWA Electric Corporation	Σ-V	SGMJV	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	R2	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-
OMRON Corporation	Sysmac G5	R88M-K	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-
Panasonic Corporation	MINAS-A4	MSMD	-	\bigcirc	-	-	-	-	-	-	-	-
	MINAS-A5	MSMD/MHMD	-	\bigcirc	-	-	\bigcirc	-	-	-	-	-
FANUC CORPORATION	β is	β	-	-	-	$\text { (} \beta 1 \text { only) }$	-	-	\bigcirc	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	MA/MH/MM	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-
KEYENCE CORPORATION	SV	SV-M/SV-B	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA5	GYS/GYB	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-
	FALDIC- α	GYS	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-
Rockwell Automation, Inc. (Allen-Bradley)	MP-/VP-	MP/VP	-	-	-	-	-	\bigcirc	-	-	-	-
	TL	TLY-A	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc
Beckhoff Automation GmbH	AM	AM30	\bigcirc	-	-	-	-	-	-	\bigcirc	-	-
	AM	AM31	-	-	-	-	-	-	-	-	\bigcirc	-
	AM	AM80/AM81	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-
Siemens AG	1FK7	1FK7	-	-	\bigcirc	-	-	\bigcirc	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	ECMA	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-
ANCA Motion	AMD2000	Alpha	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-

\qquad

Dimensions: Ball Screw Drive

The motor mounting method and the included parts are the same as the standard product. Refer to page 75 for details.

Motorless

*3 When mounting the actuator using the body mounting reference plane, use a pin. Set the height of the pin to be 5 mm or more because of round chamfering. (Recommended height 6 mm)

© Caution

1. During operation, the intermediate support mechanism emits a collision noise due to the structure.
2. Compared to the standard product, the entire length of the product will be longer for each stroke. For details, refer to the dimensions.
3. The stopper type origin position return method cannot be used as the return to origin method (due to the bumper as shown in Construction (4)).

Dimensions and Weight

Model	L	B	n	C	D	E	Product weight [kg]
LEJS \square 63N $\square \square$-790M	1154.5	970	12	4	800	180	18.4
LEJS $\square 63 \mathrm{~N} \square \square$-890M	1254.5	1070	14	5	1000	80	19.7
LEJS $\square 63 \mathrm{~N} \square \square$-990M	1354.5	1170	14	5	1000	180	20.9
LEJS $\square 63 \mathrm{~N} \square \square$-1190M	1554.5	1370	16	6	1200	180	23.4
LEJS $\square 63 \mathrm{~N} \square \square$-1490M	1954.5	1770	20	8	1600	180	28.9
LEJS $\square 63 \mathrm{C} \square \square$-1790M	2254.5	2070	24	10	2000	80	32.7

Motor Mounting Dimensions	$[\mathrm{mm}]$		
Motor type	FA	FB	FD
NZ/Mounting type Z	$\mathrm{M} 5 \times 0.8$	7	70
NY/Mounting type Y	$\mathrm{M} 4 \times 0.7$	6	70
NX/Mounting type X	$\mathrm{M} 5 \times 0.8$	6	63
NW/Mounting type W	$\mathrm{M} 5 \times 0.8$	7	70
NV/Mounting type V	$\mathrm{M} 4 \times 0.7$	6	63
NU/Mounting type U	$\mathrm{M} 5 \times 0.8$	7	70
NT/Mounting type T	$\mathrm{M} 5 \times 0.8$	7	70

LEJS Series

Motorless Type

Motor Mounting

- When mounting a hub, remove all oil content, dust, and dirt adhered to the shaft and the inside of the hub. - This product does not include the motor and motor mounting screws. (Provided by user)

Prepare a motor with a round shaft end.

- Take measures to prevent the loosening of the motor mounting screws.

Dimensions

Dimensions					
Size	Motor type	MM	TT	NN	PD
$\mathbf{4 0}$	NZ/Mounting type Z	$\mathrm{M} 2.5 \times 10$	0.65	12.5	8
	NY/Mounting type Y	$\mathrm{M} 2.5 \times 10$	0.65	12.5	8
	NX/Mounting type X	$\mathrm{M} 2.5 \times 10$	0.65	7	8
	NZ/Mounting type Z	$\mathrm{M} 3 \times 12$	1.5	18	14
	NY/Mounting type Y	$\mathrm{M} 4 \times 12$	2.7	18	11
	NX/Mounting type X	$\mathrm{M} 4 \times 12$	2.7	8	9
	NW/Mounting type W	$\mathrm{M} 4 \times 12$	2.7	12	9
	NV/Mounting type V	$\mathrm{M} 4 \times 12$	2.7	8	9
	NU/Mounting type U	$\mathrm{M} 4 \times 12$	2.7	12	11
	NT/Mounting type T	$\mathrm{M} 3 \times 12$	1.5	18	12

Included Parts List

Size: 40

Description	Quantity	Note
Motor hub	1	-
Hexagon socket head cap screw (to secure the hub)	1	M2.5 x 10: Motor type "NZ", "NY", "NX"

Size: 63

Description	Quantity	Note
Motor hub	1	-
Hexagon socket head cap screw (to secure the hub)	1	M3 x 12: Motor type "NZ", "NT"
Hexagon socket thin head cap screw (to secure the hub)		M4 x 12: Motor type "NY", "NX", "NW", "NV", "NU"

LEJS Series
 Motor Mounting Parts

Motor Flange Option

As the motor type＂NZ＂is selected for the model and this option is mounted，the motor types that can be used are shown below．

How to Order

2 Motor type	
Symbol	Type
NY	Mounting type Y
NX	Mounting type X
NW	Mounting type W
NV	Mounting type V
NU	Mounting type U
NT	Mounting type T

＊Component parts vary depending on the motor type．Refer to the＂Component Parts＂on page 77.

Compatible Motors

Applicable motor model			Size／Motor type									
Manufacturer	Series	Type	40			63						
			NZ Mounting type Z	NY Mounting type Y		NZ Mounting type Z	Mounting type Y	NX Mounting type X	NW Mounting type W	Mounting type V	NU Mounting type U	NT Mounting type T
Mitsubishi Electric Corporation	MELSERVO－JN	HF－KN	\bigcirc	－	－	\bigcirc	－	－	－	－	－	－
	MELSERVO－J3	KF－KP	\bigcirc	－	－	\bigcirc	－	－	－	－	－	－
	MELSERVO－J4	HG－KR	\bigcirc	－	－	\bigcirc	－	－	－	－	－	－
YASKAWA Electric Corporation	Σ－V	SGMJV	\bigcirc	－	－	\bigcirc	－	－	－	－	－	－
SANYO DENKI CO．，LTD．	SANMOTION R	R2	\bigcirc	－	－	\bigcirc	－	－	－	－	－	－
OMRON Corporation	Sysmac G5	R88M－K	\bigcirc	－	－	－	\bigcirc	－	－	－	－	－
Panasonic Corporation	MINAS－A4	MSMD	－	\bigcirc	－	－	\bigcirc	－	－	－	－	－
	MINAS－A5	MSMD／MHMD	－	\bigcirc	－	－	\bigcirc	－	－	－	－	－
FANUC CORPORATION	β is	β	\bigcirc	－	－	（ $\beta 1$ only）	－	－	\bigcirc	－	－	－
NIDEC SANKYO CORPORATION	S－FLAG	MA／MH／MM	\bigcirc	－	－	－	－	－	－	－	－	－
KEYENCE CORPORATION	SV	SV－M／SV－B	\bigcirc	－	－	\bigcirc	－	－	－	－	－	－
FUJI ELECTRIC CO．， LTD．	ALPHA5	GYS／GYB	\bigcirc	－	－	\bigcirc	－	－	－	－	－	－
	FALDIC－α	GYS	\bigcirc	－	－	\bigcirc	－	－	－	－	－	－
Rockwell Automation，Inc． （Allen－Bradley）	MP－／VP－	MP／VP	－	－	－	－	－	\bigcirc	－	－	－	－
	TL	TLY－A	\bigcirc	－	－	－	－	－	－	－	－	－
Beckhoff Automation GmbH	AM	AM30	－	－	－	－	－	－	－	－	－	－
	AM	AM31	\bigcirc	－	－	－	－	－	－	－	－	－
	AM	AM80／AM81	－	－	－	－	－	\bigcirc	－	－	－	－
Siemens AG	1FK7	1FK7	－	－	\bigcirc	－	－	－	－	－	－	－
Delta Electronics，Inc．	ASDA－A2	ECMA	\bigcirc	－	－	\bigcirc	－	－	－	－	－	－

LEJS Series

Motorless Type

Dimensions: Motor Flange Option

Motor plate details

Dimensions

Size	Motor type	FA	FB	FC	FD	FE	FF	FG	FH	M1	T1	M2	T2	PD	FP
40	NY	M3 x 0.5	6	45	30	3.5	6	99	49	M4 x 12	2.7	M2.5 x 10	0.65	8	12.5
	NX	-	-	-	-	-	-	-	-	-	-	M 2.5×10	0.65	8	7
63	NY	M4 x 0.7	6	70	50	3.5	6	123	68	M 4×12	2.7	M 4×12	2.7	11	18
	NX	M5 x 0.8	6	63	40	3.5	6	123	68	M 4×12	2.7	M 4×12	2.7	9	8
	NW	-	-	-	-	-	-	-	-	-	-	M 4×12	2.7	9	12
	NV	M4 x 0.7	6	63	40	3.5	6	123	68	M4 x 12	2.7	M 4×12	2.7	9	8
	NU	-	-	-	-	-	-	-	-	-	-	$\mathrm{M} 4 \times 12$	2.7	11	12
	NT	-	-	-	-	-	-	-	-	-	-	M3 x 12	1.5	12	18

Component Parts

Size: 40

No.	Description	Quantity	
		Motor type	
		NY	NX
$\mathbf{1}$	Motor plate	1	-
$\mathbf{2}$	Ring	1	-
$\mathbf{3}$	Hub (Motor side)	1	1
$\mathbf{4}$	Hexagon socket thin head cap screw	1	1
$\mathbf{5}$	Hexagon socket head cap screw	4	-

Size: 63

No.	Description	Quantity							
				Motor type					
		NX	NW	NV	NU	NT			
$\mathbf{1}$		1	1	-	1	-	-		
$\mathbf{2}$		1	1	-	1	-	-		
$\mathbf{3}$		1	1	1	1	1	1		
$\mathbf{4}$		1	1	1	1	1	1		
$\mathbf{5}$	Hexagon socket head cap screw	4	4	-	4	-	-		

LEJS Series
 Auto Switch Mounting

Auto Switch Mounting Position

［mm］						
Model	Size	A	B	C	Operating range	
LEJS	40	77	80	160	5.5	
	63	83	86	172	7.0	

＊Since the operating range is provided as a guideline including hysteresis，
it cannot be guaranteed（assuming approximately $\pm 30 \%$ dispersion）．
It may change substantially depending on the ambient environment．

Auto Switch Mounting

When mounting the auto switches，they should be inserted into the actuator＇s auto switch mounting groove as shown in the drawing below． After setting in the mounting position，use a flat head watchmaker＇s screwdriver to tighten the auto switch mounting screw that is included．

Auto Switch Mounting Screw Tightening Torque ［ $\mathrm{N} \cdot \mathrm{m}$ ］

Auto switch model	Tightening torque
D－M9 $\square \mathbf{(V)}$ $\mathbf{D}-\mathbf{M 9} \square \mathbf{W}(\mathbf{V})$	0.10 to 0.15

[^10]
Solid State Auto Switch Direct Mounting Type D-M9N(V)/D-M9P(V)/D-M9B(V) C €

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square, D-M9 \square V (With indicator light)						
Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10	to 28 VDC$)$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when turned ON.					
Standard	CE marking, RoHS					

Oilproof Heavy-duty Lead Wire Specifications

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Sheath	Outside diameter $[\mathrm{mm}]$	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $\left[\mathrm{mm}{ }^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius [mm] (Reference values)		17		

* Refer to the Web Catalog for solid state auto switch common specifications.
* Refer to the Web Catalog for lead wire lengths.

Weight

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

D-M9 \square V

Normally Closed Solid State Auto Switch Direct Mounting Type D-M9NE(V)/D-M9PE(V)/D-M9BE(V)

Grommet

- Output signal turns on when no magnetic force is detected.
- Can be used for the actuator adopted by the solid state auto switch D-M9 series (excluding special order products)

. Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Weight

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})^{* 1}$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})^{* 1}$	68	63	

*1 The 1 m and 5 m options are produced upon receipt of order.

Auto Switch Specifications

D-M9 $\square E$, D-M9 $\square E V$ (With indicator light)						
Auto switch model	D-M9NE	D-M9NEV	D-M9PE	D-M9PEV	D-M9BE	D-M9BEV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when turned ON.					
Standard	CE marking, RoHS					

Oilproof Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Sheath	Outside diameter $[\mathrm{mm}]$	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius [mm] (Reference values)				

* Refer to the Web Catalog for solid state auto switch common specifications.
* Refer to the Web Catalog for lead wire lengths.

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller
D-M9 $\square E$, D-M9 $\square E V$ (With indicator light)

D-M9■EV

2-Color Indicator Solid State Auto Switch Direct Mounting Type

D-M9NW(V)/D-MMPW(V)/D-M9BW(V) C ϵ

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square W, D-M9 \square WV (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC	or less		-	24 VDC (1	to 28 VDC)
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range \qquad Red LED illuminates. Proper operating range \qquad Green LED illuminates.					
Standard	CE marking, RoHS					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
Sheath	Outside diameter $[\mathrm{mm}]$	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius [mm] (Reference values)				

* Refer to the Web Catalog for solid state auto switch common specifications.
* Refer to the Web Catalog for lead wire lengths.

Weight

Auto switch model				D-M9NW(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	D-M9PW(V)	D-M9BW(V)
	$1 \mathrm{~m}(\mathbf{M})$	14		13
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m} \mathrm{(Z)}$	68	63	

D-M9 $\square \mathbf{W}$

LEJS Series

Electric Actuator

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website: https://www.smcworld.com

Design

\triangle Caution

1. Do not apply a load in excess of the specification limits.
Select a suitable actuator by work load and allowable moment. If the product is used outside of the specification limits, the eccentric load applied to the guide will be excessive and have adverse effects such as creating play on the guide, degrading accuracy and shortening the life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
The product can be damaged.
The components including the motor are manufactured to precise tolerances. So that even a slight deformation may cause a malfunction or seizure.

Selection

\triangle Warning

1. Do not increase the speed in excess of the specification limits.

Select a suitable actuator by the relationship of the allowable work load and speed, and the allowable speed of each stroke. If the product is used outside of the specification limits, it will have adverse effects such as creating noise, degrading accuracy and shortening the life of the product.
2. When the product repeatedly cycles with partial strokes (100 mm or less), lubrication can run out. Operate it at a full stroke at least once a day or every a thousand cycles.
3. When external force is applied to the table, it is necessary to add external force to the work load as the total carried load for the sizing.
When a cable duct or flexible moving tube is attached to the actuator, the sliding resistance of the table increases and may lead to operational failure of the product.
4. Depending on the shape of the motor to be mounted, some of the product's interior parts (hub, spider, etc.) may be visible from the motor mounting surface. If this is undesirable, please contact your nearest sales office for details on options such as covers.

\triangle Caution

1. Do not allow the table to hit the end of stroke.

When the driver parameters, origin or programs are set incorrectly, the table may collide against the stroke end of the actuator during operation. Check these points before use.
If the table collides against the stroke end of the actuator, the guide, ball screw, belt or internal stopper can be broken. This may lead to abnormal operation. rection as the workpiece will fall freely from its own weight.
2. The actual speed of this actuator is affected by the work load and stroke.
Check the specifications with reference to the model selection section of the catalog.
3. Do not apply a load, impact or resistance in addition to the transferred load during return to origin.
4. Do not dent, scratch or cause other damage to the body and table mounting surfaces.
This may cause unevenness in the mounting surface, play in the guide or an increase in the sliding resistance.
5. Do not apply strong impact or an excessive moment while mounting the product or a workpiece.
If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.
6. Keep the flatness of mounting surface should be within $0.1 \mathrm{~mm} / 500 \mathrm{~mm}$.
Unevenness of a workpiece or base mounted on the body of the product may cause play in the guide and an increase in the sliding resistance.
In the case of overhang mounting (including cantilever), use a support plate or support guide to avoid deflection of the actuator body.
7. When mounting the actuator, use all mounting holes.
If all mounting holes are not used, it influences the specifications, e.g., the amount of displacement of the table increases.
8. Do not hit the table with the workpiece in the positioning operation and positioning range.
9. Do not apply external force to the dust seal band.

Particularly during the transportation

LEJS Series

Electric Actuator Specific Product Precautions 2

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website: https://www.smcworld.com

Handling

\triangle Caution

10. When mounting the product, use screws with adequate length and tighten them with adequate torque.

Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	$\varnothing \mathbf{A}$ $[\mathrm{mm}]$	\mathbf{L} $[\mathrm{mm}]$
LEJS40	M5	3.0	5.5	36.5
LEJS63	M6	5.2	6.8	49.5

Workpiece fixed

To prevent the workpiece retaining screws from touching the body, use screws that are 0.5 mm or shorter than the maximum screw-in depth. If long screws are used, they can touch the body and cause a malfunction.
11. Do not operate by fixing the table and moving the actuator body.
12. When mounting the actuator using the body mounting reference plane, use a pin. Set the height of the pin to be 5 mm or more because of round chamfering. (Recommended height 6 mm)

Maintenance

© Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months $/ 1000 \mathrm{~km} / 5$ million cycles*1	\bigcirc	\bigcirc

*1 Select whichever comes first.

- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts.

* For lubrication, use lithium grease No. 2.

2. Loose or mechanical play in fixed parts or fixing screws.

Motorless Type

Electric Actuator/Rod Type

LEY Series

Selection Procedure

Positioning Control Selection Procedure

Step 1 Check the work load-speed. (Vertical transfer)

Step 2 Check the cycle time.

Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.
Operating
conditions
-Work load: $16[\mathrm{~kg}] \quad$ - Speed: $300[\mathrm{~mm} / \mathrm{s}]$

- Acceleration/Deceleration: $5000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$
- Stroke: $300[\mathrm{~mm}]$
- Workpiece mounting condition: Vertical upward
downward transfer

Step 1
Check the work load-speed. <Speed-Vertical Work Load Graph>
Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications with reference to the "Speed-Vertical Work Load Graph" on page 87.
Selection example) The LEY25B is temporarily selected based on the graph shown on the right side.

* It is necessary to mount a guide outside the actuator when used for horizontal transfer. When selecting the target model, refer to horizontal work load in the specifications on pages 92 and 93 and, for the precautions.

<Speed-Vertical Work Load Graph> (LEY25)
* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.

- Cycle time T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

- T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

- T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4: Settling time varies depending on the motor type and load. The value below is recommended.

T4 = 0.05 [s]

* The conditions for the settling time vary depending on the motor or driver to be used.

Calculation example)
T1 to T4 can be calculated as follows

L : Stroke [mm] (Operating condition)
V : Speed [mm/s] (Operating condition)
a1: Acceleration [mm/s²] \cdots (Operating condition)
a2: Deceleration [$\mathrm{mm} / \mathrm{s}^{2}$] \cdots (Operating condition)

T1: Acceleration time [s] ... Time until reaching the set speed
T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed
T3: Deceleration time [s] ... Time from the beginning of the constant speed operation to stop
T4: Settling time [s] ... Time until positioning is completed
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=300 / 5000=0.06[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=300 / 5000=0.06[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{300-0.5 \cdot 300 \cdot(0.06+0.06)}{300}=0.94[\mathrm{~s}]$
$\mathrm{T} 4=0.05[\mathrm{~s}]$

Therefore, the cycle time can be obtained as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.06+0.94+0.06+0.05=1.11[\mathbf{s}]$

Based on the above calculation result, the LEY25B-300 is selected.

Selection Procedure

Pushing Control Selection Procedure

Selection Example

The model selection method shown below corresponds to SMC's standard motor.
For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

Operating
conditions

Step 1 Check the force. <Force Conversion Graph>

Select the target model based on the "Ratio to rated torque" and force with reference to the "Force Conversion Graph."
Selection example)
Based on the graph shown on the right side,

- Ratio to rated torque: 30 [\%]
- Force: 255 [N]

Therefore, the LEY25B is temporarily selected.

Step 2 Check the lateral load on the rod end.
<Graph of Allowable Lateral Load on the Rod End>
Confirm the allowable lateral load on the rod end of the actuator: LEY25B, which has been selected temporarily with reference to the "Graph of Allowable Lateral Load on the Rod End."
Selection example)
Based on the graph shown on the right side,
\bullet Jig weight: $0.5[\mathrm{~kg}] \approx 5[\mathrm{~N}]$

- Product stroke: 300 [mm]

Therefore, the lateral load on the rod end is in the allowable range.
Based on the above calculation result, the LEY25B-300 is selected.

<Force Conversion Graph> (LEY25)

<Graph of Allowable Lateral Load on the Rod End>

LEY Series

 Stroke Speed."
LEY25 \square (Motor mounting position: Top/Parallel, In-line)

LEY32 \square (Motor mounting position: Top/Parallel)

LEY32D (Motor mounting position: In-line)

LEY63 \square (Motor mounting position: Top/Parallel, In-line)

Model Selection LEY Series
 Motorless Type
 size 25, 32, 63

The values shown below are allowable values of the actuator body. Do not use the actuator so that it exceeds these specification ranges.
Speed-Horizontal Work Load Graph

* The allowable speed is restricted depending on the stroke. Select it by referring to the "Allowable Stroke Speed."

LEY25 \square (Motor mounting position: Top/Parallel, In-line)

LEY32 \square (Motor mounting position: Top/Parallel)
LEY32D (Motor mounting position: In-line)

LEY63 \square (Motor mounting position: Top/Parallel, In-line)

Allowable Stroke Speed

Model	Motor	Lead		Stroke [mm]							
		Symbol	[mm]	Up to 100	Up to 200	Up to 300	Up to 400	Up to 500	Up to 600	Up to 700	Up to 800
LEY25 $\binom{$ Motor mounting position: }{ Top/Parallel, In-line }	100 W equivalent	A	12	900			600	-	-	-	-
		B	6	450			300	-	-	-	-
		C	3	225			150	-	-	-	-
		(Motor rotation speed)		(4500 rpm)			(3000 rpm)	-	-	-	-
LEY32 $\square$$\binom{\text { Motor mounting position: }}{\text { Top/Parallel }}$	200 W equivalent	A	20	1200				800	-	-	-
		B	10	600				400	-	-	-
		C	5	300				200	-	-	-
		(Motor rotation speed)		(3600 rpm)				(2400 rpm)	-	-	-
$\binom{\text { LEY32D }}{\left(\begin{array}{c} \text { Motor mounting position: } \\ \text { In-line } \end{array}\right.}$	200 W equivalent	A	16	1000				640	-	-	-
		B	8	500				320	-	-	-
		C	4	250				160	-	-	-
		(Motor rotation speed)			(3750	rpm)		(2400 rpm)	-	-	-
LEY63 \square	400 W equivalent	A	20	1000					800	600	500
		B	10	500					400	300	250
		C	5	250					200	150	125
		(Motor rotation speed)				(3000 rpm)			(2400 rpm)	(1800 rpm)	(1500 rpm)
		L	2.86*1	70							
		(Motor rotation speed)		(1470 rpm)							

[^11]
LEY Series

Force Conversion Graph (Guide)

* These graphs show an example of when the standard motor is mounted. Calculate the force based on used motor and driver.

LEY25 \square (Motor mounting position: Top/Parallel, In-line)

LEY32 \square (Motor mounting position: Top/Parallel)

LEY32D \square (Motor mounting position: In-line)

* When using the force control or speed control, set the maximum value to be no more than 90% of the rated torque.

LEY63 \square (Motor mounting position: Top/Parallel, In-line)

Graph of Allowable Lateral Load on the Rod End (Guide)

LEFB

LEJS

플

ভ

Electric Actuator/ Rod Type

RoHS

How to Order

1) Accuracy	
Nil	Basic typ
H	High-precision type
(3) Motor mounting position	
Nil	Top mounting
R	Right side parallel
L	Left side parallel
D	In-lin

(6) Stroke [mm]

$\mathbf{3 0}$	30
to	to
$\mathbf{8 0 0}$	800

* Refer to the applicable stroke table.
*1 Only available for top mounting and right/left side parallel types.
(Equivalent lead which includes the pulley ratio [4:7])
* The values shown in () are the lead for top mounting, right/left side parallel types. Except motor type NM1. (Equivalent lead which includes the pulley ratio [1.25:1])Dust-tight/Water-jet-proof <Only available for LEY63>
Symbol LEY25/32

LEY63

Nil	IP4x equivalent	IP5x equivalent (Dust-protected)
\mathbf{P}	-	IP65 equivalent (Dust-tight/Water-jet-proof)/
With vent hole tap		

* When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water.
* The fiting and tubing should be provided separately by user. Select
[Applicable tubing O.D.: 64 or more, Connection thread: Rc1/8].
* Cannot be sed in enviromments exposed to cuting oii, etc. Take suitable protective measures.
* For details about enclosure, refer to the "Enclosure" on pages 121 and 122.

Applicable Stroke Table

- Standard

	30	50	100	150	200	250	300	350	400	450	500	600	700	800
LEY25	-	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-
LEY32	-	\bigcirc	-	-	-									
LEY63	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc							

* Please consult with SMC for non-standard strokes as they are produced as special orders.

For auto switches, refer to pages 117 to 120.
Compatible Motors

Applicable motor model			Size/Motor type																					
Manufacturer	Series	Type	25						32									63						
			$\begin{array}{\|c\|} \hline \text { NZ } \\ \text { Mounting } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { NY } \\ \text { Mounting } \end{array}$		NM1 Mounting	NM2 Mounting	NM3 Mounting	$\begin{gathered} \mathrm{NZ} \\ \text { Mounting } \\ \hline \end{gathered}$	gY		NW Mounting	$\begin{array}{\|c\|} \hline \text { NV } \\ \text { Mounting } \end{array}$		$\begin{gathered} \text { NT } \\ \text { Mounting } \end{gathered}$	NM1 Mounting	NM2 Mounting	$\begin{array}{\|c\|} \hline \text { NZ } \\ \text { Mouning } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { NY } \\ \text { Mounting } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { NX } \\ \text { Mounting } \end{array}$	$\begin{array}{\|c\|} \hline \text { NW } \\ \text { Mounting } \end{array}$	NV	NU \|Monting	NT
			type Z	type Y	tpe X	tpe M1	type M2	typ M3	type Z	type Y	type X	typ W	type V	tpee U	type T	tpe M1	tye M2	type Z	tpe Y	tpe X	tpe W	tpe V	tpeU	tpee T
Mitsubishi Electric Corporation	MELSERVO-JN	HF-KN	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	MELSERVO-J3	KF-KP	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	-	-	-	-		
	MELSERVO-J4	HG-KR	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-		
YASKAWA Electric Corporation	Σ-V	SGMJV	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	-	-	-	-		
SANYO DENKI CO., LTD.	SANMOTION R	R2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
OMRON Corporation	Sysmac G5	R88M-K	-	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	-	-	-	-	-
Panasonic Corporation	MINAS-A4	MSMD	-	\bigcirc	-	-	-	-	-	\bullet	-	-	-	-	-	-	-		-	-		-		
	MINAS-A5	MSMD/MHMD		\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-		-
FANUC CORPORATION	β is	β	-	-	-	-	-	-	$\underset{\mid(\beta 1 \text { ony } y)}{ }$	-	-	-	-	-	-	-	-	$\mid \underset{\mid(1) \text { ony } y \mid}{ }$	-	-	\bullet	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	MA/MH/MM	\bigcirc	-		-	-	-	-	-	-	-	-	-	-	-	-	\bigcirc	-	-		-		
KEYENCE CORPORATION	SV	SV-M/SV-B	\bigcirc		-	-		-	\bigcirc		-	-	-		-	-		-		-				-
FUJI ELECTRIC CO., LTD.	ALPHA5	GYS/GYB	\bigcirc						\bigcirc		-							\bigcirc						
	FALDIC- α	GYS	-		-		-		-	-	-		-			-	-	-						
MinebeaMitsumi Inc.	SZ	A17PM/A23KM		-	-	$0^{* 1}$	-	$0^{* 2}$	-	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
Shinano Kenshi Co., Ltd. ORIENTAL MOTOR Co., Ltd.	CSB-BZ	CSB-BZ	-	-	-	* *1	-	**2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	AR/AZ	AR/AZ (46 only)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	AR/AZ	AR/AZ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
FASTECH Co., Ltd.	Ezi-SERVO	EzM	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Rockwell Automation, Inc. (Allen-Bradley)	MP-/VP-	MP/VP		-	-	-	-	-	-	-	-*1	-	-	-	-	-	-	-	-	**1	-	-		
	TL	TLY-A	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\bigcirc
Beckhoff Automation GmbH	AM	AM30	\bigcirc	-	-	-	-	-	-	-	-	-	- *1	-	-	-	-	-	-	-	-	* ${ }^{* 1}$	-	-
	AM	AM31	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- *1	-
	AM	AM80/AM81	-	-	-	-	-	-	-	-	${ }^{*}{ }^{* 1}$	-	-	-	-	-	-	-	-	${ }^{* * 1}$	-	-	-	-
Siemens AG	1FK7	1FK7	-	-	\bigcirc	-	-	-	-	-	- *1	-	-	-	-	-	-	-	-	- *1	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	ECMA	\bigcirc	-	-	-	-	二	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-
ANCA Motion	AMD2000	Alpha	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-

- Values in this specifications table are the allowable values of the actuator body with the standard motor mounted.

- Do not use the actuator so that it exceeds these values.

Model					LEY25 (Top/Parallel) LEY25D (In-line)			LEY32 (Top/Parallel)			LEY32D (In-line)		
Stroke [mm]*1					$\begin{gathered} 30,50,100,150,200,250 \\ 300,350,400 \end{gathered}$			$\begin{gathered} 30,50,100,150,200,250 \\ 300,350,400,450,500 \end{gathered}$			$\begin{gathered} 30,50,100,150,200,250 \\ 300,350,400,450,500 \end{gathered}$		
	Work load [kg]			Horizontal*2	18	50	50	30	60	60	30	60	60
				Vertical	8	16	30	9	19	37	12	24	46
	Force [N]* (Set value: Rated torque 45 to 90\%)				65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max.*4 speed [mm/s]	Stroke range		Up to 300	900	450	225	1200	600	300	1000	500	250
				305 to 400	600	300	150						
				405 to 500	-	-	-	800	400	200	640	320	160
	Pushing speed [mm/s]*5				35 or less			30 or less					
	Max. acceleration/deceleration [mm/s ${ }^{2}$]				5000								
	Positioning repeatability [mm]			asic type	± 0.02								
			High-p	precision type	± 0.01								
	Lost motion*6 [mm]			asic type	0.1 or less								
			High-p	precision type	0.05 or less								
	Ball screw specifications		Threa	ad size [mm]	$\varnothing 10$			$\varnothing 12$					
			$\begin{array}{r} \mathrm{Le} \\ \text { (includi } \end{array}$	ead [mm] ding pulley ratio)	12	6	3	$\begin{gathered} 16 \\ (20) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 \\ (10) \end{gathered}$	$\begin{gathered} 4 \\ (5) \\ \hline \end{gathered}$	16	8	4
			Shaft	length [mm]	Stroke + 93.5			Stroke + 104.5					
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 7}$				50/20								
	Actuation type				Ball screw + Belt (Top/Parallel) Ball screw (In-line)			Ball screw + Belt [Pulley ratio 1.25:1]			Ball screw		
	Guide type				Sliding bushing (Piston rod)								
	Operating temperature range [${ }^{\circ} \mathrm{C}$]				5 to 40								
	Operating humidity range [\%RH]				90 or less (No condensation)								
-	Actuation unit weight [kg] (* [ST]: Stroke)				$\begin{aligned} & 0.15+\left(0.69 \times 10^{-3}\right) \times[S T]: 100 \text { st or less } \\ & 0.16+\left(0.69 \times 10^{-3}\right) \times[S T]: \text { Over } 100 \mathrm{st} \end{aligned}$			$\begin{aligned} & 0.24+\left(1.40 \times 10^{-3}\right) \times[\mathrm{ST}]: 100 \text { st or less } \\ & 0.28+\left(1.40 \times 10^{-3}\right) \times[\mathrm{ST}]: \text { Over } 100 \mathrm{st} \end{aligned}$					
产	Other inertia [kg.cm²]				0.012 (LEY25), 0.015 (LEY25D)			0.035 (LEY32), 0.061 (LEY32D)					
흧	Friction coefficient				0.05								
* 8	Mechanical efficiency				0.8								
番	Motor shape				$\square 40$			$\square 60$					
능	Motor type				AC servo motor								
응	Rated output capacity [W]				100			200					
-	Rated torque [N.m]				0.32			0.64					
	Rated rotation [rpm]				3000								

*1 Please consult with SMC for non-standard strokes as they are produced as special orders.
*2 This is the maximum value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*3 The force setting range for the force control (Speed control mode, Torque control mode)
The force changes according to the set value. Set it with reference to the "Force Conversion Graph (Guide)" on page 89.
*4 The allowable speed changes according to the stroke.
*5 The allowable collision speed for collision with the workpiece
*6 A reference value for correcting an error in reciprocal operation
*7 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*8 Each value is only to be used as a guide to select a motor of the appropriate capacity.

Weight

Product Weight

Series	LEY25 (Motor mounting position: Top/Parallel)									LEY32 (Motor mounting position: Top/Parallel)										
Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product weight [kg]	0.8	0.9	1.1	1.3	1.5	1.7	1.8	2.0	2.2	1.4	1.5	1.8	2.3	2.6	2.9	3.1	3.4	3.7	4.0	4.3
Series	LEY25D (Motor mounting position: In-line)									LEY32D (Motor mounting position: In-line)										
Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product weight [kg]	0.8	0.9	1.1	1.3	1.5	1.7	1.9	2.0	2.2	1.4	1.6	1.8	2.3	2.6	2.9	3.2	3.4	3.7	4.0	4.3

Additional Weight

Additional Weight

Size		$\mathbf{2 5}$	$\mathbf{3 2}$
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot (2 sets including mounting bolt)	0.08	0.14	
Rod flange (including mounting bolt)		0.17	0.20
Head flange (including mounting bolt)			
Double clevis (including pin, retaining ring and mounting bolt)		0.16	0.22

- Values in this specifications table are the allowable values of the actuator body with the standard motor mounted.
- Do not use the actuator so that it exceeds these values.

Model				LEY63D (In-line)			LEY63 (Top/Parallel)			
	Stroke [mm]*1			50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800						
	Work load [kg]		Horizontal*2	40	70	80	40	70	80	200
			Vertical	19	38	72	19	38	72	115
	Force [N]*3 (Set value: Rated torque 45 to 150%)			156 to 521	304 to 1012	573 to 1910	156 to 521	304 to 1012	573 to 1910	1003 to 3343
	Max.*4 speed [mm/s]	Stroke range	Up to 500	1000	500	250	1000	500	250	70
			505 to 600	800	400	200	800	400	200	
			605 to 700	600	300	150	600	300	150	
			705 to 800	500	250	125	500	250	125	
	Pushing speed [mm/s]*5			30 or less						
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			5000						3000
	Positioning repeatability [mm]		Basic type	± 0.02						
			High-precision type	± 0.01						
	Lost motion*6 [mm]		Basic type	0.1 or less						
			High-precision type	0.05 or less						
	Ball screw specifications		Thread size [mm]	ø20						
			Lead [mm]	20	10	5	20	10	5	5 (2.86)
			Shaft length [mm]	Stroke + 147						
	Impact/Vibration resistance [$\left.\mathrm{m} / \mathrm{s}^{2}\right]^{* 7}$			50/20						
	Actuation type			Ball screw			Ball screw + Belt [Pulley ratio 1:1]			Ball screw + Belt [Pulley ratio 4:7]
	Guide type			Sliding bushing (Piston rod)						
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40						
	Operating humidity range [\%RH]			90 or less (No condensation)						
	Actuation unit weight [kg] (* [ST]: Stroke)			$\begin{aligned} & 0.84+\left(2.77 \times 10^{-3}\right) \times[\mathrm{ST}]: 200 \text { st or less } \\ & 0.94+\left(2.77 \times 10^{-3}\right) \times[\mathrm{ST}]: \text { Over } 200 \mathrm{st}, 500 \text { st or less } \\ & 1.03+\left(2.77 \times 10^{-3}\right) \times[\mathrm{ST}]: \text { Over } 500 \mathrm{st} \end{aligned}$						
	Other inertia [$\mathrm{kg} \cdot \mathrm{cm}^{2}$]			0.056 (LEY63D)			0.110			0.053
	Friction coefficient			0.05						
	Mechanical efficiency			0.8						
	Motor shape			$\square 60$						
	Motor type			AC servo motor						
	Rated output capacity [W]			400						
	Rated torque [$\mathrm{N} \cdot \mathrm{m}$]			1.27						
	Rated rotation [rpm]			3000						

*1 Please consult with SMC for non-standard strokes as they are produced as special orders.
*2 This is the maximum value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*3 The force setting range for the force control (Speed control mode, Torque control mode)
The force changes according to the set value. Set it with reference to the "Force Conversion Graph (Guide)" on page 89.
*4 The allowable speed changes according to the stroke.
*5 The allowable collision speed for collision with the workpiece
*6 A reference value for correcting an error in reciprocal operation
*7 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*8 Each value is only to be used as a guide to select a motor of the appropriate capacity.

Weight

Product Weight

Model	LEY63D (Motor mounting position: In-line)												
Stroke [mm]	50	100	150	200	250	300	350	400	450	500	600	700	800
Product weight [kg]	3.7	4.2	4.8	5.3	6.5	7.0	7.6	8.2	8.8	9.3	11.0	12.1	13.3
Model	LEY63 (Motor mounting position: Top/Parallel)												
Stroke [mm]	50	100	150	200	250	300	350	400	450	500	600	700	800
Product weight [kg]	3.5	4.0	4.7	5.2	6.4	6.9	7.5	8.0	8.6	9.1	10.8	12.0	13.1

Additional Weight

Size	$\mathbf{k g}]$	
Rod end male thread	Male thread	0.12
	Nut	0.04
Rod flange (including mounting bolt)	0.51	
Foot (2 sets including mounting bolt)	0.26	
Double clevis (including pin, retaining ring and mounting bolt)	0.58	

Refer to the "Motor Mounting" on pages 109 and 110 for details about motor mounting and included parts.

LEY25, 32, 63

*1 Do not allow collisions at either end of the rod operating range at a speed exceeding "pushing speed." Additionally, when running the positioning operation, do not set within 2 mm of both ends for size 25, 32, and do not set within 4 mm of both ends for size 63.
*2 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.

IP65 equivalent (Dust-tight/Water-jet-proof):
LEY63 $\square \square \square-\square \mathbf{P}$ (View ZZ)

*3 When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water. The fitting and tubing should be provided separately by user.
Select [Applicable tubing O.D.: ø4 or more, Connection thread: Rc1/8].

Dimensions

Size	Stroke range [mm]	B	C	D	EH	EV	H	J	K	L	M	O1	R	S	T	U	Y1	Y2	G
25	15 to 100	89.5	13	20	44	45.5	M8 x 1.25	24	17	12.5	34	M5 x 0.8	8	46	92	1	26.5	22	4
	105 to 400	114.5																	
32	20 to 100	96	13	25	51	56.5	M8 x 1.25	31	22	16.5	40	M6 x 1.0	10	60	118	1	34	27	4
	105 to 500	126																	
63	Up to 200	123	21	40	76	82	M16 x 2	44	36	33.4	60	M8 x 1.25	16	80	146	4	32.2	29	8
	205 to 500	158																	
	505 to 800	193																	

* The L measurement is when the unit is at the retracted stroke end position.

[mm]										
Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100									
	101 to 124					75				
	125 to 200		59	49.5						
	201 to 400		76	58						
32	20 to 39	25	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100		36	43						
	101 to 124					80				
	125 to 200		53	51.5						
	201 to 500		70	60						
63	50 to 70	38	24	50	44	65	M8 x 1.25	10	6	7
	75 to 120		45	60.5						
	125 to 200		58	67						
	205 to 500		86	81		100				
	505 to 800					135				

LEY Series

Dimensions: Motor Top/Parallel

 for details about motor mounting and included parts.
Motor flange dimensions

LEY25: NM1, NM2, NM3

Dimensions

Size	Motor type	FA	FB	FC	FD	FE	FF	FG
25	NZ	M4 x 0.7	7.5	46	30	3.7	11	42
	NY	M3 x 0.5	5.5	45	30	5	11	38
	NX	M4 x 0.7	7	46	30	3.7	8	42
	NM1, NM2	ø3.4	7	31	28	3.5	8.5	42
	NM3	ø3.4	7	31	28	3.5	5.5	42
32	NZ, NW, NU	M5 x 0.8	8.5	70	50	4.6	13	60
	NY	M4 x 0.7	7	70	50	4.6	13	60
	NT	M5 x 0.8	8.5	70	50	4.6	17	60
	NM1	M4 x 0.7	(5)	47.1	38.2	-	5	56.4
	NM2	M4 x 0.7	8	50	38.2	-	11.5	60
63	NZ, NW	M5 x 0.8	8.5	70	50	4.6	11	60
	NY	M4 x 0.7	8	70	50	4.6	11	60
	NT	M5 x 0.8	8.5	70	50	4.6	14.5	60

LEY25: NZ, NY, NX
LEY32: NZ, NY, NW, NU, NT

LEY63: NZ, NY, NW, NT

Motor left side parallel type: LEY32L
63

Motor right side parallel type: LEY32R

63

[^12]Refer to the "Motor Mounting" on page 111 for details about motor mounting and included parts.

LEY25, 32

*1 Do not allow collisions at either end of the rod operating range at a speed exceeding "pushing
speed." Additionally, when running the positioning operation, do not set within 2 mm of both ends.
*2 The direction of rod end width across flats $(\square \mathrm{K})$ differs depending on the products.

Dimensions

Size	Stroke range [mm]	B	C	D	EH	EV	H	J	K	L	M	01	R	S	T	U
25	15 to 100	89.5	13	20	44	45.5	M8x 1.25	24	17	12.5	34	M5 x 0.8	8	45	46.5	1.5
	105 to 400 20 to 100	114.5														
32	$\frac{20 \text { to } 100}{105}$ to 500	96	13	25	51	56.5	M8 x 1.25	31	22	16.5	40	M6 x 1.0	10	60	61	1

* The L measurement is when the unit is at the retracted stroke end position.

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 35	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100		42	41						
	105 to 120		42			75				
	125 to 200		59	49.5						
	205 to 400		76	58						
32	20 to 35	25	22	36	30	50	M6 x 1.0	8.5	5	6
	40 to 100		36	43		50				
	105 to 120					80				
	125 to 200		53	51.5						
	205 to 500		70	60						

LEY Series

Dimensions: In-line Motor

Refer to the "Motor Mounting" on page 111 for details about motor mounting and included parts.

LEY25: NM1, NM2

LEY32: NM1

LEY32: NM2

Dimensions

Size	Motor type	FA	FB	FC	FD	FE	FF	FG	FH
25	NZ/NX	M 4×0.7	7.5	46	30	3.7	47	45	-
	NY	M3 x 0.5	6	45	30	4.2	47	45	-
	NM1	$\varnothing 3.4$	17	31	22	2.5	36	45	19
	NM2	$\varnothing 3.4$	28	31	22	2.5	47	45	30
32	NZ/NW/NU/NT	M5 x 0.8	8.5	70	50	3.3	60	60	-
	NY	M 4×0.7	8	70	50	3.3	60	60	-
	NX	M5 x 0.8	8.5	63	40	3.5	63	60	-
	NV	M 4×0.7	8	63	40	3.3	63	60	-
	NM1	M 4×0.7	9.5	47.14	38.1	2	34	60	51.5
	NM2	M 4×0.7	8	50	36	3.3	60	60	-

Refer to the "Motor Mounting" on page 112 for details about motor mounting and included parts.

LEY63

*1 Do not allow collisions at either end of the rod operating range at a speed exceeding "pushing speed." Additionally, when running the positioning operation, do not set within 4 mm of both ends.
*2 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.

IP65 equivalent (Dust-tight/Water-jet-proof): LEY63DN $\square \square-\square \mathbf{P}$ (View Z)

*3 When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water. The fitting and tubing should be provided separately by user.
Select [Applicable tubing O.D.: $\varnothing 4$ or more, Connection thread: Rc1/8].

Dimensions

Size	Stroke range [mm]	B	C	D	EH	EV	H	J	K	L	M	01	R	S	T	U
63	50 to 200	123	21	40	76	82	M16 x 2	44	36	33.4	60	M8 x 1.25				
	205 to 500	158											16	78	83	5

* The L measurement is when the unit is at the retracted stroke end position.

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO		MR	XA	XB
63	50 to 70	38	24	50	44	65	M8 x 1.25		10	6	7
	75 to 120		45	60.5							
	125 to 200		58	67							
	205 to 500		86	81		100					
	505 to 800					135					
Size	Motor type			FB	FC	FD	FE	FF	FG	FH	FK
	NZ/NW/ NU/NT	M5	0.8	10	70	50	3.5	67.7	78	22.5	50
63	NY	M4	0.7	8	70	50	3.5	67.7	78	22.5	50
	NX	M5	0.8	10	63	40	3.5	72.7	78	27.5	55
	NV	M4	0.7	8	63	40	3.5	72.7	78	27.5	55

LEY Series

Motorless Type

Dimensions

25 A

Rod end male thread: LEY32 $\square \square B-\square \square M$
63 C

* Refer to the Web Catalog for details about the rod end nut and mounting bracket.
* Refer to the precautions on pages 122 and 123 when mounting end brackets such as knuckle joint or workpieces.

Size	B1	$\mathbf{C} 1$	$\mathbf{H} 1$	L1	L2	MM
$\mathbf{2 5}$	22	20.5	8	36	23.5	M14 $\times 1.5$
$\mathbf{3 2}$	22	20.5	8	40	23.5	M14 $\times 1.5$
$\mathbf{6 3}$	27	26	11	72.4	39	M18 $\times 1.5$

* The L1 measurement is when the unit is at the retracted stroke end position.

Outward mounting

[mm]														
Size	Stroke range [mm]	A	LS	LS 1	LL	LD	LG	LH	LT	LX	LY	LZ	X	Y
25	15 to 100	134.6	98.8	19.8	6.4	6.6	3.5	30	2.6	57	51.5	71	11.2	5.8
25	105 to 400	159.6	123.8											
32	20 to 100	153.7	114	19.2	9.3	6.6	4	36	3.2	76	61.5	90	11.2	7
	105 to 500	183.7	144											
63	50 to 200	196.8	133.2	25.2	25.2	9	5	50	3.2	95	88	110	14.2	8
	205 to 500	231.8	168.2											
	505 to 800	266.8	203.2											

Material: Carbon steel (Chromated)

* The A and LL measurements are when the unit is at the retracted stroke end position.
* When the motor mounting is the right or left side parallel type, the head side foot should be mounted outward.

A
 Head flange: LEY25 $\square \square \mathbf{B}-\square \square \square \mathbf{G}$

Rod/Head Flange

Rod/Head Flange					$[\mathrm{mm}]$			
Size	FD	FT	FV	FX	FZ	LL	M	
$\mathbf{2 5}$	5.5	8	48	56	65	4.5	34	
$\mathbf{3 2}$	5.5	8	54	62	72	8.5	40	
$\mathbf{6 3}$	9	9	80	92	108	24.4	60	

Material: Carbon steel (Nickel plating)

* The LL measurement is when the unit is at the retracted stroke end position.

Included parts - Double clevis - Body mounting bolt - Clevis pin - Retaining ring

Double Clevis
Refer to the Web Catalog for details about the rod end nut and mounting bracket.
[mm]

Size	Stroke range [mm]	A	CL	CD	CT	CU	CW	CX	CZ	L	RR
25	15 to 100	158.5	148.5	10	5	14	20	18	36	12.5	10
	105 to 200	183.5	173.5								
32	20 to 100	178.5	168.5	10	6	14	22	18	36	16.5	10
	105 to 200	208.5	198.5								
63	50 to 200	232.6	218.6	14	8	22	30	22	44	33.4	14
	205 to 300	267.6	253.6								

[^13]
Motorless Type

Electric Actuator/Guide Rod Type

LEYG Series
Model Selection

LEYG Series $>$ Page 105

Moment Load Graph

The model selection method shown below corresponds to SMC's standard motor.
For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

Selection Conditions

Mounting orientation		Vertical	Horizontal	
Max. speed [mm/s]		"Speed-Vertical Work Load Graph"	200 or less	Over 200
Bearing	Sliding bearing	Graph (1), (2)	Graph (5), (6)*1	Graph (7), 8)
	Ball bushing bearing	Graph (3), (4)	Graph (9, (10)	Graph (11), (12)

*1 For the sliding bearing type, the speed is restricted with a horizontal/moment load.
Vertical Mounting, Sliding Bearing

[^14]
Moment Load Graph

Horizontal Mounting, Sliding Bearing

(7) $L=50$ mm Max. speed $=$ Over 200 mm/s

(6) $L=\mathbf{1 0 0} \mathbf{~ m m}$ Max. speed $=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(8) $L=100$ mm Max. speed $=$ Over 200 mm/s

Horizontal Mounting, Ball Bushing Bearing
(9) $L=\mathbf{5 0} \mathbf{~ m m ~ M a x . ~ s p e e d ~} \mathbf{=} \mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(11) $L=50 \mathrm{~mm}$ Max. speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

(10) $L=100 \mathrm{~mm}$ Max. speed $=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less
(12) $L=100 \mathrm{~mm}$ Max. speed $=$ Over $\mathbf{2 0 0}$ mm/s

Operating Range when Used as Stopper

LEYG $\square \mathbf{M}$ (Sliding bearing)

[^15]

LEYG Series

Motorless Type

Speed-Vertical Work Load Graph

LEYG25 \square (Motor mounting position: Top mounting/ln-line)

LEYG32 \square (Motor mounting position: Top mounting)

LEYG32D (Motor mounting position: In-line)

Speed-Horizontal Work Load Graph
These graphs show the work load when the external guide is used together. When using the LEYG alone, refer to pages 101 and 102.
LEYG25 \square (Motor mounting position: Top mounting/In-line)

LEYG32 \square (Motor mounting position: Top mounting)

LEYG32D (Motor mounting position: In-line)

Model Selection LEYG Series
 Motorless Type

Force Conversion Graph

* These graphs show an example of when the standard motor is mounted. Calculate the force based on used motor and driver.

LEYG25 \square (Motor mounting position: Top mounting/In-line)

LEYG32 \square (Motor mounting position: Top mounting)

LEYG32D (Motor mounting position: In-line)

* When using the force control or speed control, set the maximum value to be no more than 90% of the rated torque.

LEFB

Electric Actuator/ Guide Rod Type

How to Order

1 Accuracy		(2) Size
Nil	Basic type	25
H	High-precision type	32

(4) Motor mounting position

Nil	Top mounting
D	In-line

8 Guide option
 Nil \quad Without option
 F With grease retaining function
 * Only available for sliding bearing.

Refer to the applicable stroke table.

7 Stroke [mm]	
$\mathbf{3 0}$	30
to	to
$\mathbf{3 0 0}$	300

*1 The values shown in () are the lead for size 32 top mounting type. Except motor type NM1. (Equivalent lead which includes the pulley ratio [1.25:1])
(6) Lead [mm]

Symbol	LEYG25	LEYG32*1
A	12	$16(20)$
\mathbf{B}	6	$8(10)$
\mathbf{C}	3	$4(5)$

Applicable Stroke Table

Applicable Stroke Table					: Standard			
Model	Stroke Lmm	30	50	100	150	200	250	
LEYG25	\bullet							
LEYG32	\bullet							

* Please consult with SMC for non-standard strokes as they are produced as special orders.

5 Motor type
Symbol Type NZ Mounting type Z NY Mounting type Y NX Mounting type X NW Mounting type W NV Mounting type V NU Mounting type U NT Mounting type T NM1 Mounting type M1 NM2 Mounting type M2 NM3 Mounting type M3

* Refer to the "Compatible Motors."

When using auto switch with the guide rod type LEYG series Insert the auto switch from the front side with rod (plate) sticking out. For the parts hidden behind the guide attachment (Rod stick out side), the auto switch cannot be fixed.
Please consult with SMC when using auto switch on the rod stick out side, as it is produced as a special order.

Compatible Motors

For auto switches, refer to pages 117 to 120.

Applicable motor model			Size/Motor type														
Manufacturer	Series	Type	25						32								
			NZ Mounting type Z	NY Mounting type Y	$\begin{gathered} \mathrm{NX} \\ \text { Mounting } \\ \text { type X } \end{gathered}$	NM1 Mounting type M1	NM2 Mounting type M2	NM3 Mounting type M3	$\begin{gathered} \mathrm{NZ} \\ \text { Mounting } \\ \text { type Z } \end{gathered}$	NY Mounting type Y	$\begin{gathered} \text { NX } \\ \text { Mounting } \\ \text { type X } \end{gathered}$	NW Mounting type W	NV Mounting type V	NU Mounting type U	NT Mounting type T	NM1 Mounting type M1	NM2 Mounting type M2
Mitsubishi Electric Corporation	MELSERVO-JN	HF-KN	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
	MELSERVO-J3	KF-KP	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
	MELSERVO-J4	HG-KR	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	Σ-V	SGMJV	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	R2	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
OMRON Corporation	Sysmac G5	R88M-K	\bigcirc	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
Panasonic Corporation	MINAS-A4	MSMD	-	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-
	MINAS-A5	MSMD/MHMD	-	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-
FANUC CORPORATION	Bis	β	\bigcirc	-	-	-	-	-	\bigcirc	-	-	\bigcirc	-	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	MA/MH/MM	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV	SV-M/SV-B	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA5	GYS/GYB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	FALDIC- α	GYS	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
MinebeaMitsumi Inc.	SZ	A17PM/A23KM	-	-	-	-*1	-	**2	-	-	-	-	-	-	-	\bigcirc	-
Shinano Kenshi Co., Ltd.	CSB-BZ	CSB-BZ	-	-	-	-*1	-	**2	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	AR/AZ	AR/AZ (46 only)	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	-
	AR/AZ	AR/AZ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\bigcirc
FASTECH Co., Ltd.	Ezi-SERVO	EzM	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	-	-
Rockwell Automation, Inc. (Allen-Bradley)	MP-/VP-	MP/VP	-	-	-	-	-	-	-	-	- *1	-	-	-	-	-	-
	TL	TLY-A	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	\bigcirc	-	-
Beckhoff Automation GmbH	AM	AM30	\bigcirc	-	-	-	-	-	-	-	-	-	-*1	-	-	-	-
	AM	AM31	\bigcirc	-	-	-	-	-	-	-	-	-	-	\bigcirc	-	-	-
	AM	AM80/AM81	\bigcirc	-	-	-	-	-	-	-	- *1	-	-	-	-	-	-
Siemens AG	1FK7	1FK7	-	-	\bigcirc	-	-	-	-	-	-*1	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	ECMA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ANCA Motion	AMD2000	Alpha	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-

*1 Motor mounting position: In-line only *2 Motor mounting position: Top only

Model			LEYG25 ${ }_{\mathrm{L}}^{\mathrm{L}}$（Top mounting） LEYG25ㄴㄹ（In－line）			LEYG32 ${ }_{\text {L }}^{\text {M }}$（Top mounting）			LEYG32 ${ }_{\text {L }}{ }^{\text {D }}$（In－line）		
	Stroke［mm］＊1		30，50，100，150，200，250， 300			30，50，100，150，200，250， 300			30，50，100，150，200，250， 300		
	Work load［kg］	Horizontal＊2	18	50	50	30	60	60	30	60	60
		Vertical	7	15	29	7	17	35	10	22	44
	Force［N］＊3 （Set value：Rated torque 30 to 90% ）		65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max．speed［mm／s］		900	450	225	1200	600	300	1000	500	250
	Pushing speed［mm／s］＊4		35 or less			30 or less					
	Max．acceleration／deceleration［ $\mathrm{mm} / \mathrm{s}^{2}$ ］		5000								
	Positioning repeatability［mm］	Basic type	± 0.02								
		High－precision type	± 0.01								
	Lost motion＊5 ［mm］	Basic type	0.1 or less								
		High－precision type	0.05 or less								
	Ball screw specifications	Thread size［mm］	$\varnothing 10$			$\varnothing 12$					
		Lead［mm］ （including pulley ratio）	12	6	3	$\begin{gathered} 16 \\ (20) \end{gathered}$	$\begin{gathered} 8 \\ (10) \end{gathered}$	$\begin{gathered} 4 \\ (5) \end{gathered}$	16	8	4
		Shaft length［mm］	Stroke＋ 93.5			Stroke＋ 104.5					
	Impact／Vibration resistance［m／s $\left.{ }^{2}\right]^{* 6}$		50／20								
	Actuation type		$\begin{gathered} \text { Ball screw + Belt (LEY口) } \\ \text { Ball screw (LEYロD) } \end{gathered}$			Ball screw＋Belt ［Pulley ratio 1．25：1］			Ball screw		
	Guide type		Sliding bearing（LEYG $\square \mathrm{M}$ ），Ball bushing bearing（LEYG $\square \mathrm{L}$ ）								
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40								
	Operating humidity range［\％RH］		90 or less（No condensation）								
$\begin{aligned} & \text { n } \\ & \underset{y}{0} \end{aligned}$	Actuation unit weight［kg］ （＊［ST］：Stroke）	Sliding bearing LEYG $\square \mathrm{M}$	$\begin{array}{\|l\|} \hline 0.29+\left(2.20 \times 10^{-3}\right) \times[\mathrm{ST}]: 185 \mathrm{st} \text { or less } \\ 0.34+\left(1.92 \times 10^{-3}\right) \times[\mathrm{ST}]: \text { Over } 185 \mathrm{st} \\ \hline \end{array}$			$\begin{aligned} & 0.48+\left(2.91 \times 10^{-3}\right) \times[\mathrm{ST}]: 180 \mathrm{st} \text { or less } \\ & 0.55+\left(2.62 \times 10^{-3}\right) \times[\mathrm{ST}]: \text { Over } 180 \mathrm{st} \end{aligned}$					
$\begin{aligned} & \text { प्ण } \\ & \text { O} \\ & \hline 0 \end{aligned}$		Ball bushing bearing LEYG $\square \mathbf{L}$	$0.33+\left(1.69 \times 10^{-3}\right) \times[S T]: 110$ st or less$0.36+\left(1.80 \times 10^{-3}\right) \times[S T]:$ Over 110 st			$\begin{aligned} & 0.50+\left(2.40 \times 10^{-3}\right) \times[\mathrm{ST}]: 110 \mathrm{st} \text { or less } \\ & 0.55+\left(2.51 \times 10^{-3}\right) \times[\mathrm{ST}]: \text { Over } 110 \mathrm{st} \end{aligned}$					
$\begin{aligned} & \text { © } \\ & \text { ó } \\ & \text { む } \end{aligned}$	Other inertia［kg．cm ${ }^{2}$ ］		0.012 （LEYG25） 0.015 （LEYG25D）			0.035 （LEYG32）			0.061 （LEYG32D）		
$\stackrel{\square}{0}$	Friction coefficient		0.05								
＊7	Mechanical efficiency		0.8								
¢	Motor shape		$\square 40$			$\square 60$					
흔	Motor type		AC servo motor								
응	Rated output capacity［W］		100			200					
\％	Rated torque［N．m］		0.32			0.64					
\％	Rated rotation［rpm］		3000								

$* 1$ Please consult with SMC for non－standard strokes as they are produced as special orders．
＊2 This is the maximum value of the horizontal work load．An external guide is necessary to support the load（Friction coefficient of guide： 0.1 or less）．The actual work load changes according to the condition of the external guide．Confirm the load using the actual device．
＊3 The force setting range for the force control（Speed control mode， Torque control mode）
The force changes according to the set value．Set it with reference to the＂Force Conversion Graph＂on page 104.
＊4 The allowable collision speed for collision with the workpiece
＊5 A reference value for correcting an error in reciprocal operation
＊6 Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．） Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊7 Each value is only to be used as a guide to select a motor of the ap－ propriate capacity

Weight

Product Weight［kg］														
Model	LEYG25 ${ }_{\mathrm{L}}^{\mathrm{M}}$（Motor mounting position：Top mounting）							LEYG32 ${ }_{\mathrm{L}}^{\mathrm{L}}$（Motor mounting position：Top mounting）						
Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Sliding bearing LEYG $\square \mathrm{M}$	1.3	1.5	1.8	2.2	2.6	2.9	3.2	2.2	2.5	3.1	3.8	4.4	4.8	5.3
Ball bushing bearing LEYG \square L	1.3	1.5	1.8	2.2	2.5	2.8	3.0	2.2	2.5	2.9	3.6	4.1	4.6	5.0

Model	LEYG25 ${ }_{\text {L }}^{\text {M }}$（Motor mounting position：In－line）							LEYG32 ${ }_{\text {L }} \mathrm{D}$（Motor mounting position：In－line）						
Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Sliding bearing LEYG $\square \mathbf{M}$	1.3	1.5	1.8	2.3	2.6	2.9	3.2	2.3	2.5	3.1	3.8	4.4	4.9	5.3
Ball bushing bearing LEYG $\square \mathrm{L}$	1.3	1.6	1.8	2.2	2.5	2.8	3.0	2.3	2.5	2.9	3.7	4.1	4.6	5.0

LEYG Series

Motorless Type

Dimensions: Motor Top Mounting
Refer to the "Motor Mounting" on page 109 for details about motor mounting and included parts.

LEYG25, 32

*1 Do not allow collisions at either end of the rod operating range at a speed exceeding "pushing speed."
Additionally, when running the positioning operation, do not set within 2 mm of both ends.
*2 For size 32, the through-holes cannot be used when they are blocked by the overall length of the mounted motor. Use taps for mounting.

LEYG $\square \mathbf{L}$ (Ball bushing bearing) $\quad[\mathrm{mm}]$

Size	Stroke range $[\mathrm{mm}]$	L	DB
$\mathbf{2 5}$	Up to 110	91	
	115 to 190	115	10
	195 to 300	133	
$\mathbf{3 2}$	Up to 110	97.5	13
	115 to 190	116.5	
	195 to 300	134	

LEYG $\square \mathbf{M}$ (Sliding bearing)

Size	Stroke range $[\mathrm{mm}]$	\mathbf{L}	DB
$\mathbf{2 5}$	Up to 55	67.5	
	60 to 185	100.5	12
	190 to 300	138	
$\mathbf{3 2}$	Up to 55	74	
	60 to 185	107	16
	190 to 300	144	

* Refer to page 109 for the dimensions of motor flange.

LEYG \square M, LEYG \square L Common

Size	Stroke range [mm]	B	C	DA	EA	EB	EH	EV	EC	ED	G	GA	H	J	K	M	NA	NB
25	Up to 35	89.5	50	20	46	85	103	52.3	11	12.5	5.4	40.3	98.8	30.8	29	34	M5 x 0.8	8
	40 to 100		67.5															
	105 to 120	114.5																
	125 to 200		84.5															
	205 to 300		102															
32	Up to 35	96	55	25	60	101	123	63.8	12	16.5	5.4	50.3	125.3	38.3	30	40	M6 x 1.0	10
	40 to 100		68															
	105 to 120	126																
	125 to 200		85															
	205 to 300		102															
Size	Stroke range [mm]	NC	OA	OB	P	Q	S	T	U	WA	WB	WC	X	XA	XB	Y1	Y2	Z
25	Up to 35	6.5	M6 x 1.0	12	80	18	30	95	6.8	35	26		54	4	5	26.5	22	8.5
	40 to 100									50	33.5	70						
	105 to 120											95						
	125 to 200									70	43.5							
	205 to 300									85	51							
32	Up to 35	8.5	M6 x 1.0	12	95	28	40	117	7.3	40	28.5	75	64	5	6	34	27	8.5
	40 to 100									50	33.5							
	105 to 120											105						
	125 to 200									70	43.5							
	205 to 300									85	51							

[^16]Refer to the "Motor Mounting" on page 111 for details about motor mounting and included parts.

LEYG $\square \mathbf{M}$ (Sliding bearing) [mm]

Size	Stroke range $[\mathrm{mm}]$	L	DB
$\mathbf{2 5}$	Up to 55	67.5	
	60 to 185	100.5	12
	190 to 300	138	
32	Up to 55	74	
	60 to 185	107	16
	190 to 300	144	

Dimensions

Dimensions									[mm]
Size	Motor type	FA	FB	FC	FD	FE	FF	FG	FH
25	NZ/NX	M4 x 0.7	7.5	46	30	3.7	47	45	-
	NY	M3 $\times 0.5$	6	45	30	4.2	47	45	-
	NM1	$\varnothing 3.4$	17	31	22	2.5	36	45	19
	NM2	$\varnothing 3.4$	28	31	22	2.5	47	45	30
32	NZ/NW/NU/NT	M5 x 0.8	8.5	70	50	3.3	60	60	-
	NY	M4 x 0.7	8	70	50	3.3	60	60	-
	NX	M5 x 0.8	8.5	63	40	3.5	63	60	-
	NV	M4 x 0.7	8	63	40	3.5	63	60	-
	NM1	M4 x 0.7	9.5	47.14	38.1	2	34	60	51.5
	NM2	M4 x 0.7	8	50	36	3.3	60	60	-

LEYG \square M, LEYG \square L Common

Size	Stroke range [mm]	B	C	DA	EB	EH	EV	EC	ED	G	GA	H	J	K		
25	Up to 35	89.5	50	20	85	103	52.3	11	12.5	5.4	40.3	53.3	30.8	29	M5 x 0.8	
	40 to 100		67.5													
	105 to 120	114.5														
	125 to 200		84.5													
	205 to 300		102													
32	Up to 35	96	55	25										30		
	40 to 100		68		101	123									M6 x 1.0	
	105 to 120	126					63.8	12	16.5	5.4	50.3	68.3	38.3			
	125 to 200		85													
	205 to 300		102													
Size	Stroke range [mm]	NC	OA	OB	P	Q	S	T	U	WA	WB	WC	X	XA	XB	Z
25	Up to 35	6.5	M6 x 1.0	12	80	18	30	95	6.8	35	26	70	54	4	5	8.5
	40 to 100									50	33.5					
	105 to 120											95				
	125 to 200									70	43.5					
	205 to 300									85	51					
32	Up to 35	8.5	M6 x 1.0	12	95	28	40	117	7.3	40	28.5	75	64	5	6	8.5
	40 to 100									50	33.5					
	105 to 120											105				
	125 to 200									70	43.5					
	205 to 300									85	51					

[^17]- The motor and motor mounting screws should be provided by user.
- Motor shaft type should be cylindrical for the NZ, NY, NW, NM2 motor types, and D-cut type for the NM1 and NM3 motor type.
Motor Mounting: Top/Parallel
- When mounting a pulley, remove all oil content, dust, and dirt adhered to the shaft and the inside of the pulley.
- Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws.

LEY25, LEYG25: NM1, NM2, NM3

Motor flange details

LEY25: NZ, NY, NX
LEY32: NZ, NY, NW, NU, NT

LEY25: NM1, NM2, NM3

FB, depth FE

LEY32: NM1, NM2

Dimensions

Size	Motor type	MM1	TT1	MM2	TT2	MM3	TT3	PD	PP	BT	FA	FB	FC	FD	FE	FF	FG
25	NZ	M 2.5×10	1.0	M3 $\times 8$	0.63	M 4×10	1.5	8	7.5	19	M4 x 0.7	7.5	46	30	3.7	11	42
	NY	M 2.5×10	1.0	M3 $\times 8$	0.63	M 4×10	1.5	8	7.5	19	M3 x 0.5	5.5	45	30	5	11	38
	NX	M 2.5×10	1.0	M3 $\times 8$	0.63	M4 $\times 10$	1.5	8	4.5	19	M4 x 0.7	7	46	30	3.7	8	42
	NM1	M3 $\times 5$	0.63	M3 $\times 8$	0.63	M4 $\times 10$	1.5	5	11.8	19	$\varnothing 3.4$	7	31	28	3.5	8.5	42
	NM2	M 2.5×10	1.0	M3 $\times 8$	0.63	M 4×10	1.5	6	4.8	19	$\varnothing 3.4$	7	31	28	3.5	8.5	42
	NM3	M3 $\times 5$	0.63	M3 $\times 8$	0.63	M4 $\times 10$	1.5	5	8.8	19	$\varnothing 3.4$	7	31	28	3.5	5.5	42
32	NZ	M3 $\times 12$	1.5	M4 $\times 12$	1.5	M6 x 14	5.2	14	4.5	30	M5 x 0.8	8.5	70	50	4.6	13	60
	NY	M3 $\times 12$	1.5	M4 $\times 12$	1.5	M6 x 14	5.2	11	4.5	30	M4 x 0.7	7	70	50	4.6	13	60
	NW	M 4×12	3.6	$\mathrm{M} 4 \times 12$	1.5	M6 x 14	5.2	9	4.5	30	M5 x 0.8	8.5	70	50	4.6	13	60
	NU	M3 $\times 12$	1.5	M4 x 12	1.5	M6 $\times 14$	5.2	11	4.5	30	M5 x 0.8	8.5	70	50	4.6	13	60
	NT	M3 $\times 12$	1.5	M4 $\times 12$	1.5	M6 $\times 14$	5.2	12	8.5	30	M5 x 0.8	8.5	70	50	4.6	17	60
	NM1	M3 $\times 5$	0.63	M4 $\times 12$	1.5	M6 x 14	5.2	6.35	8	30	M4 x 0.7	(5)	47.1	38.2	-	5	56.4
	NM2	M3 $\times 12$	1.5	M4 $\times 12$	1.5	M6 x 14	5.2	10	3	30	M4 x 0.7	8	50	38.2	-	11.5	60

Motor Mounting Diagram

Mounting procedure

1) Secure the motor pulley to the motor (provided by user) with the MM1 hexagon socket head cap screw or hexagon socket head set screw.
2) Secure the motor to the motor flange with the motor mounting screws (provided by user).
3) Put the timing belt on the motor pulley and body side pulley, and then secure it temporarily with the MM2 hexagon socket head cap screws. (Refer to the mounting diagram.)
4) Apply the belt tension and tighten the timing belt with the MM2 hexagon socket head cap screws. (The reference level is the elimination of the belt deflection.)
5) Secure the return plate with the MM3 hexagon socket head cap screws.

Included Parts List

Size: 25, 32

Description	Quantity	
	Motor type	
	NZ/NY/NW/NT/NM2	NM1/NM3
Motor flange	1	1
Motor pulley	1	1
Return plate	1	1
Timing belt	1	1
Hexagon socket head cap screw (to mount the return plate)	4	4
Hexagon socket head cap screw (to mount the motor flange)	2	2
Hexagon socket head cap screw (to secure the pulley)	1	-
Hexagon socket head set screw (to secure the pulley)	-	1

Electric Actuators Rod Type/Guide Rod Type

Motor Mounting: Top/Parallel

Motor flange details

LEY63: NZ, NY, NW, NT

\triangle Be careful about the motor flange mounting direction.

Dimensions																
Motor type	MM1	TT1	MM2	TT2	MM3	TT3	PD	PP	BT	FA	FB	FC	FD	FE	FF	FG
NZ	M 4 x 12	3.6	M4 x 12	2.7	M8 $\times 16$	12.5	14	4.5	98	M5 x 0.8	8.5	70	50	4.6	11	60
NY	M 4×12	3.6	M 4×12	2.7	M8 $\times 16$	12.5	14	4.5	98	M4 x 0.7	8	70	50	4.6	11	60
NW	M 4×12	3.6	M 4×12	2.7	M8 $\times 16$	12.5	9	4.5	98	M5 x 0.8	8.5	70	50	4.6	11	60
NT	M 4×12	3.6	M 4×12	2.7	M8 $\times 16$	12.5	12	8	98	M5 x 0.8	8.5	70	50	4.6	14.5	60

Motor Mounting Diagram

Mounting procedure

1) Secure the motor pulley to the motor (provided by user) with the MM1 hexagon socket head cap screw.
2) Secure the motor to the motor flange with the motor mounting screws (provided by user)
3) Put the timing belt on the motor pulley and body side pulley, and then secure it temporarily with the MM2 hexagon socket head cap screws. (Refer to the mounting diagram.)
4) Apply the belt tension and tighten the timing belt with the MM2 hexagon socket head cap screws. (The reference level is the elimination of the belt deflection.)
5) Secure the return plate with the MM3 hexagon socket head cap screws

Included Parts List

Size: 63

Description	Quantity
	Motor type
	NZ/NY/NW/NT
Motor flange	1
Motor pulley	1
Return plate	1
Timing belt	1
Hexagon socket head cap screw (to mount the return plate)	4
Hexagon socket head cap screw (to mount the motor flange)	4
Hexagon socket head cap screw (to secure the pulley)	1
O-ring	1

LEY/LEYG Series

Motorless Type

- The motor and motor mounting screws should be provided by user.
- Motor shaft type should be cylindrical for the NZ, NY, NX, NW, NM2 motor types, and D-cut type for the NM1 motor type.
Motor Mounting: In-line
- When mounting a hub, remove all oil content, dust, and dirt adhered to the shaft and the inside of the hub.
- Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws.
$\operatorname{LEY}_{32}^{25}$ D, LEYG ${ }_{32}{ }^{25} \square$

Mounting procedure

1) Secure the motor hub to the motor (provided by user) with the MM hexagon socket head cap screw.
2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
3) Secure the motor to the motor flange with the motor mounting screws (provided by user).

Mounting procedure

1) Secure the motor hub to the motor (provided by user) with the M3 $\times 4$ hexagon socket head set screw.
2) Secure the motor to the motor flange with the motor mounting screws (provided by user).
3) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
4) Secure the motor flange with the M4 $x 5$ hexagon socket head set screws.

LEY32D, LEYG32■D: NM1

[Included parts]
Hexagon socket head set screw/MM

Mounting procedure

1) Secure the motor hub to the motor (provided by user) with the MM hexagon socket head set screw.
2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
3) Secure the motor to the motor block with the motor mounting screws (provided by user).

LEY25D, LEYG25■D: NM2

Mounting procedure

1) Insert the ring spacer into the motor (provided by user).
2) Secure the motor hub to the motor (provided by user) with the M2.5 x 10 hexagon socket head cap screw.
3) Secure the motor to the motor flange with the motor mounting screws (provided by user).
4) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
5) Secure the motor flange with the M4 x 5 hexagon socket head set screws.

Dimensions

Size	Motor type	MM	TT	PD	PP	
$\mathbf{2 5}$	NZ	$\mathrm{M} 2.5 \times 10$	1.0	8	12.5	
	NY	$\mathrm{M} 2.5 \times 10$	1.0	8	12.5	
	NX	$\mathrm{M} 2.5 \times 10$	1.0	8	7	
	NM1	$\mathrm{M} 3 \times 5$	0.63	5	10.5	
	NM2	$\mathrm{M} 2.5 \times 10$	1.0	6	12.4	
	NZ	$\mathrm{M} 3 \times 12$	1.5	14	18	
	NY	$\mathrm{M} 4 \times 12$	3.6	11	18	
	NX	$\mathrm{M} 4 \times 12$	3.6	9	5	
	NW	$\mathrm{M} 4 \times 12$	3.6	9	12	
	NV	$\mathrm{M} 4 \times 12$	3.6	9	5	
	NU	$\mathrm{M} 4 \times 12$	3.6	11	12	
	NT	$\mathrm{M} 3 \times 12$	1.5	12	18	
	NM1	$\mathrm{M} 4 \times 5$	1.5	6.35	2.1	
	NM2	$\mathrm{M} 4 \times 12$	3.6	10	12	

Included Parts List

Size: 25

Description	Quantity		
	Motor type		
	NZ/NY/NX	NM1	NM2
Motor hub	1	1	1
Hexagon socket head cap screw (to secure the hub)	1	-	1
Motor flange	-	1	1
Hexagon socket head set screw (to osecure the hub)		1	-
Hexagon socket head set screw (to secure the motor flange)	-	2	2
Ring spacer	-	-	1

Size: 32

	Quantity	
Description	Motor type	
	NZ/NY/NXX NW/NV/NU// NT/NM2	NM1
Motor hub	1	1
Hexagon socket head cap screw (to secure the hub)	1	-
Hexagon socket head set screw (to secure the hub)	-	1

Electric Actuators Rod Type/Guide Rod Type

- The motor and motor mounting screws should be provided by user.
- Prepare a motor with a round shaft end

Motor Mounting: In-line

- When mounting a hub, remove all oil content, dust, and dirt adhered to the shaft and the inside of the hub.
- Take measures to prevent the loosening of the motor mounting screws.

LEY63D

Secure the motor hub to the motor (provided by user) with the MM hexagon socket head cap screw.
2) Put the O-ring on the mating part of the motor, and check the motor hub position and then insert it. (Refer to the mounting diagram.)
3) Secure the motor to the motor flange with the motor mounting screws (provided by user).

Dimensions					
Size	Motor type	MM	TT	PD	PP
63	NZ	M3 x 12	1.5	14	17.7
	NY				
	NX	M4 x 12	3.6	9	6.7
	NW				11.7
	NV	M4 x 12	3.6	9	6.7
	NU	M4 $\times 12$	3.6	11	11.7
	NT	M3 $\times 12$	1.5	12	17.7

Included Parts List
Size: 63

Description	Quantity
	Motor type
	NZ/NY/NX/NW/NV/NU/NT
Motor hub	1
Hexagon socket head cap screw (to secure the hub)	1
O-ring	1

LEY/LEYG Series
 Motor Mounting Parts

Motor Flange Option

A motor can be added to the motorless specification after purchase. The applicable motor types are shown below. (Except NM1 and NM3) Use the following part numbers to select a compatible motor flange option and place an order.

How to Order

(1) Size

$\mathbf{2 5}$	For LEY25/LEYG25
$\mathbf{3 2}$	For LEY32/LEYG32
$\mathbf{6 3}$	For LEY63

2 Motor mounting position

\mathbf{P}	Top/Parallel
PL*1	Top/Parallel (Lead L)
\mathbf{D}	In-line

*1 Size 63 only

3 Motor type

Symbol	Type	Symbol	Type	
NZ	Mounting type Z	NV	Mounting type V	
NY	Mounting type Y	NU	Mounting type U	
NX	Mounting type X	NT	Mounting type T	
NW	Mounting type W	NM2	Mounting type M2	

* Refer to the "Compatible Motors."

Compatible Motors

Applicable motor model			Size/Motor type											
Manufacturer	Series	Type	25				32/63							
			NZ Mounting type Z	NY Mounting type Y	NX Mounting type X	NM2 Mounting type M2				NW Mounting type W		NU Mounting type U	NT Mounting type T	NM2 Mounting type M2
Mitsubishi Electric Corporation	MELSERVO-JN	HF-KN	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-	-	-
	MELSERVO-J3	HF-KP	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-	-	-
	MELSERVO-J4	HG-KR	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-	-	-
YASKAWA Electric Corporation	Σ-V	SGMJV	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	R2	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-	-	-
OMRON Corporation	Sysmac G5	R88M-K	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-
Panasonic Corporation	MINAS-A4	MSMD	-	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-	-
	MINAS-A5	MSMD/MHMD	-	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-	-
FANUC CORPORATION	β is	β	\bigcirc	-	-	-	(31 only)	-	-	\bigcirc	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	MA/MH/MM	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV	SV-M/SV-B	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA5	GYS/GYB	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
	FALDIC- α	GYS	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	AR/AZ	AR/AZ (46 only)	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
	AR/AZ	AR/AZ	-	-	-	-	-	-	-	-	-	-	-	${ }^{* 3}$
Rockwell Automation, Inc. (Allen-Bradley)	MP-/VP-	MP/VP	-	-	-	-	-	-	- *1	-	-	-	-	-
	TL	TLY-A	\bigcirc	-	-	-	-	-	-	-	-	-	\bigcirc	-
Beckhoff Automation GmbH	AM	AM30	-	-	-	-	-	-	-	-	- *1	-	-	-
	AM	AM31	\bigcirc	-	-	-	-	-	-	-	-	- *2	-	-
	AM	AM80/AM81	-	-	-	-	-	-	- *1	-	-	-	-	-
Siemens AG	1FK7	1FK7	-	-	\bigcirc	-	-	-	- *1	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	ECMA	-	-	-	-	\bigcirc	-	-	-	-	-	-	-

* When the LEY $\square{ }_{32}^{25} \square{ }_{\mathrm{NM} 3}^{\mathrm{NM} 1} \square-\square$ or LEY $\square \mathrm{G}_{32}^{25} \square \square{ }_{\mathrm{NM} 3}^{\mathrm{NM} 1} \square-\square$ is purchased, it is not possible to change to other motor types.
*1 Motor mounting position: In-line only
*2 Only in-line type is available for size 63.
*3 Except size 63

Dimensions: Motor Flange Option

Motor mounting position: Top/Parallel

Component Parts

No.	Description	Quantity	
		Size	
		$\mathbf{2 5 , 3 2}$	$\mathbf{6 3}$
$\mathbf{1}$	Motor flange	1	1
$\mathbf{2}$	Motor pulley	1	1
$\mathbf{3}$	Hexagon socket head cap screw (to secure the pulley)	1	1
$\mathbf{4}$	Hexagon socket head cap screw (to mount the motor flange)	2	4

Motor flange details

Size: 25, 32

Size 25: NM2
$2 \times$ FA
depth of counterbore FB

Size 32: NM2

Dimensions

Size	Motor type	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
25	NZ	M 4×0.7	7.5	46	30	3.7	11	42	M2.5 x 10	1.0	M3 x 8	0.63	8	7.5
	NY	M3 x 0.5	5.5	45	30	5	11	42	M 2.5×10	1.0	M3 $\times 8$	0.63	8	7.5
	NX	M4 x 0.7	7	46	30	3.7	8	42	M 2.5×10	1.0	M3 $\times 8$	0.63	8	4.5
	NM2	ø3.4	7	31	30	3.7	8.5	42	M 2.5×10	1.0	M3 x 8	0.63	6	4.8
32	NZ	M5 x 0.8	8.5	70	50	4.6	13	60	M3 x 12	1.5	M 4×12	1.5	14	4.5
	NY	M4 x 0.7	7	70	50	4.6	13	60	M3 x 12	1.5	M 4×12	1.5	11	4.5
	NW	M5 x 0.8	8.5	70	50	4.6	13	60	M 4×12	3.6	$\mathrm{M} 4 \times 12$	1.5	9	4.5
	NU	M5 x 0.8	8.5	70	50	4.6	13	60	M3 x 12	1.5	$\mathrm{M} 4 \times 12$	1.5	11	4.5
	NT	M5 x 0.8	8.5	70	50	4.6	17	60	M3 x 12	1.5	$\mathrm{M} 4 \times 12$	1.5	12	8.5
	NM2	M 4×0.7	8	50	38.2	-	11.5	60	M3 $\times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5	10	3
63	NZ	M5 x 0.8	8.5	70	50	4.6	11	60	$\mathrm{M} 4 \times 12$	3.6	$\mathrm{M} 4 \times 12$	2.7	14	4.5
	NY	M4 $\times 0.7$	8	70	50	4.6	11	60	$\mathrm{M} 4 \times 12$	3.6	$\mathrm{M} 4 \times 12$	2.7	14	4.5
	NW	M5 x 0.8	8.5	70	50	4.6	11	60	$\mathrm{M} 4 \times 12$	3.6	$\mathrm{M} 4 \times 12$	2.7	9	4.5
	NT	M5 x 0.8	8.5	70	50	4.6	14.5	60	M4 x 12	3.6	$\mathrm{M} 4 \times 12$	2.7	12	8

LEY/LEYG Series

Dimensions: Motor Flange Option

Motor mounting position: In-line [Size: 25, 32]
Component Parts

No.	Description	Quantity
$\mathbf{1}$	Motor flange	1
$\mathbf{2}$	Motor hub	1
$\mathbf{3}$	Hexagon socket head cap screw (to secure the hub)	1
$\mathbf{4}$	Hexagon socket head cap screw (to mount the motor block)	2

Size: 25, Motor type: NM2
Hexagon socket head cap screw: M2
(Tightening torque: T2 [N•m])

Motor flange B details

Dimensions

Size	Motor type	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
25	NZ	M4 x 0.7	7.5	46	30	3.7	47	45	M2.5 x 10	1.0	M4 x 40	1.5	8	12.5
	NY	M3 $\times 0.5$	6	45	30	4.2	47	45	M2.5 x 10	1.0	M4 x 40	1.5	8	12.5
	NX	M4 x 0.7	7.5	46	30	3.7	47	45	M 2.5×10	1.0	M4 x 40	1.5	8	7
	NM2	ø3.4	28	31	22	2.5	30	45	M 2.5×10	1.0	M4 $\times 40$	1.5	6	12.4
32	NZ	M5 x 0.8	8.5	70	50	3.3	60	60	M3 $\times 12$	1.5	M6 x 60	5.2	14	18
	NY	M4 x 0.7	8	70	50	3.3	60	60	M4 $\times 12$	3.6	M6 $\times 60$	5.2	11	18
	NX	M5 x 0.8	8.5	63	40	3.5	63	60	$\mathrm{M} 4 \times 12$	3.6	M6 x 60	5.2	9	5
	NW	M5 x 0.8	8.5	70	50	3.3	60	60	M 4×12	3.6	M6 x 60	5.2	9	12
	NV	M4 x 0.7	8	63	40	3.3	63	60	$\mathrm{M} 4 \times 12$	3.6	M6 x 60	5.2	9	5
	NU	M5 x 0.8	8.5	70	50	3.3	60	60	M4 $\times 12$	3.6	M6 x 60	5.2	11	12
	NT	M5 x 0.8	8.5	70	50	3.3	60	60	M3 $\times 12$	1.5	M6 x 60	5.2	12	18
	NM2	M4 x 0.7	8	50	36	3.3	60	60	M 4×12	3.6	M6 x 60	5.2	10	12

Motor Mounting Parts LEY/LEYG Series

Dimensions: Motor Flange Option

Motor mounting position: In-line [Size: 63]

Hexagon socket head cap screw: M2
(Tightening torque: T2 [N•m])

Motor flange details

Component Parts

No.	Description	Quantity
$\mathbf{1}$	Motor flange	1
2	Motor hub	1
$\mathbf{3}$	Hexagon socket head cap screw (to secure the hub)	1
4	Hexagon socket head cap screw (to mount the motor adapter)	4
5	O-ring (Wire diameter ø1.5)	1
$\mathbf{6}$	O-ring (Wire diameter $\varnothing \mathbf{0 . 0})$	1

LEY/LEYG Series
 Auto Switch Mounting

Proper Auto Switch Mounting Position

Applicable auto switches: $\mathrm{D}-\mathrm{M9} \square(\mathrm{~V})$, $\mathrm{D}-\mathrm{M9} \square \mathrm{E}(\mathrm{V})$, $\mathrm{D}-\mathrm{M} 9 \square \mathrm{~W}(\mathrm{~V})$, $\mathrm{D}-\mathrm{M9} \square \mathrm{~A}(\mathrm{~V})$

LEY63

LEY25, 32

Auto switch groove

[mm]

Size	Stroke range	Auto switch position				Return to origin distance E	Operating range
		Mounting: Left facing		Mounting: Right facing			
		A	B	C	D		-
25	15 to 100	27	62.5	39	50.5	(2)	4.2
	105 to 400	52		64			
32	20 to 100	30.5	85.5	42.5	53.5	(2)	4.9
	105 to 500	90.5		102.5			
63	50 to 200	37	86	49	74	(4)	9.8
	205 to 500	72		84			
	505 to 800	107		119			

[^18]
Auto Switch Mounting

Auto Switch Mounting Screw

Tightening Torque
[$\mathrm{N} \cdot \mathrm{m}$]

Auto switch model	Tightening torque
D-M9 $\square(\mathbf{V})$	
D-M9 $\square \mathbf{E}(\mathbf{V})$	0.05 to 0.15
D-M9 $\square \mathbf{W}(\mathbf{V})$	0.05 to 0.10
D-M9 $\square \mathbf{A}(\mathbf{V})$	

* When tightening the auto switch mounting screw (included with auto switch), use a watchmaker's screwdriver with a handle diameter of about 5 to 6 mm .

Solid State Auto Switch Direct Mounting Type D-M9N(V)/D-M9P(V)/D-M9B(V) C €

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square, D-M9 \square V (With indicator light)						
Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10	to 28 VDC$)$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when turned ON.					
Standard	CE marking, RoHS					

Oilproof Heavy-duty Lead Wire Specifications

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Sheath	Outside diameter $[\mathrm{mm}]$	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $\left[\mathrm{mm}{ }^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius [mm] (Reference values)		17		

* Refer to the Web Catalog for solid state auto switch common specifications
* Refer to the Web Catalog for lead wire lengths.

Weight

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

D-M9 \square V

Normally Closed Solid State Auto Switch Direct Mounting Type D-M9NE(V)/D-M9PE(V)/D-M9BE(V)

Grommet

- Output signal turns on when no magnetic force is detected.
- Can be used for the actuator adopted by the solid state auto switch D-M9 series (excluding special order products)

. Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Oilproof Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Sheath	Outside diameter $[\mathrm{mm}]$	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius $[\mathrm{mm}]$ (Reference values)				

* Refer to the Web Catalog for solid state auto switch common specifications.
* Refer to the Web Catalog for lead wire lengths.

Weight
 W

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})^{* 1}$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})^{* 1}$	68	63	

*1 The 1 m and 5 m options are produced upon receipt of order. on products that are compliant with international standards.

PLC: Programmable Logic Controller
D-M9 $\square E$, D-M9 $\square E V$ (With indicator light)

Refer to the SMC website for details

D-M9■EV

2-Color Indicator Solid State Auto Switch Direct Mounting Type

D-M9NW(V)/D-MMPW(V)/D-M9BW(V) C ϵ

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square W, D-M9 \square WV (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC	or less		-	24 VDC (1	to 28 VDC)
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range \qquad Red LED illuminates. Proper operating range \qquad Green LED illuminates.					
Standard	CE marking, RoHS					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
Sheath	Outside diameter $[\mathrm{mm}]$	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius [mm] (Reference values)				

* Refer to the Web Catalog for solid state auto switch common specifications.
* Refer to the Web Catalog for lead wire lengths.

Weight

Auto switch model				D-M9NW(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	D-M9PW(V)	D-M9BW(V)
	$1 \mathrm{~m}(\mathbf{M})$	14		13
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m} \mathrm{(Z)}$	68	63	

Dimensions

D-M9 $\square \mathbf{W}$

D-M9 $\square W V$

Water Resistant 2-Color Indicator Solid State Auto Switch: Direct Mounting Type D-M9NA(V)/D-M9PA(V)/D-M9BA(V) C ϵ Rors

Auto Switch Specifications

Grommet

- Water (coolant) resistant type
- 2-wire load current is reduced (2.5 to 40 mA).
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)
- Using flexible cable as standard spec.

Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.
Please consult with SMC if using coolant liquid other than water based solution

Weight

Auto switch model		D-M9NA(V)	D-M9PA(V)	D-M9BA(V)
Lead wire length	0.5 m (Nil)	8	8	7
	1 m (M)	14		13
	3 m (L)	41		38
	5 m (Z)	68		63

PLC: Programmable Logic Controller						
D-M9 \square A, D-M9 \square AV (With indicator light)						
Auto switch model	D-M9NA	D-M9NAV	D-M9PA	D-M9PAV	D-M9BA	D-M9BAV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range Red LED illuminates. Proper operating range Green LED illuminates.					
Standard	CE marking (EMC directive/RoHS directive)					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model			D-M9NA \square D-M9NAV \square D-M9PA \square D-M9PAV \square D-M9BA \square D-M9BAV \square		
Sheath	Outside diameter $[\mathrm{mm}]$	2.6			
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)		
	Outside diameter $[\mathrm{mm}]$	0.88			
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15			
	Strand diameter $[\mathrm{mm}]$	0.05			
Minimum bending radius $[\mathrm{mm}]$ (Reference values)					17

* Refer to the Web Catalog for solid state auto switch common specifications.
* Refer to the Web Catalog for lead wire lengths.

Dimensions

D-M9 \square A

LEY/LEYG Series
 Electric Actuators Specific Product Precautions 1

\triangle
Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website: https://www.smcworld.com

Design / Selection

\triangle Warning

1. Do not apply a load in excess of the specification limits.

Select a suitable actuator by work load and allowable lateral load on the rod end. If the product is used outside of the specification limits, the eccentric load applied to the piston rod will be excessive and have adverse effects such as creating play on the sliding parts of the piston rod, degrading accuracy and shortening the life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
This can cause a failure.
3. When used as a stopper, select the LEYG series "Sliding bearing" for a stroke of 30 mm or less.
4. When used as a stopper, fix the main body with a guide attachment ("Top mounting" or "Bottom mounting").
If the end of the actuator is used to fix the main body (end mounting), the excessive load acts on the actuator, which adversely affects the operation and life of the product.

Handling

\triangle Caution

1. When using the pushing operation, be sure to set to force/speed control, and use within the specified pushing speed range for each series.
Do not allow the piston rod to hit the workpiece and end of the stroke in the position control. The lead screw, bearing and internal stopper may be damaged and lead to malfunction.
2. For pushing operation, the maximum torque value of the motor to be used should be set to $\mathbf{9 0 \%}$ or less of the rated torque of the reference motor. For the LEY63, 150\% or less.

It may lead to damage and malfunction.
3. The maximum speed of this actuator is affected by the product stroke.

Check the model selection section of the catalog.
4. Do not apply a load, impact or resistance in addition to the transferred load during return to origin.
Additional force will cause the displacement of the origin position.
5. Do not scratch or dent the sliding parts of the piston rod, by striking or attaching objects.
The piston rod and guide rod are manufactured to precise tolerances, even a slight deformation may cause a malfunction.
6. When an external guide is used, connect it in such a way that no impact or load is applied to it.
Use a freely moving connector (such as a floating joint).
7. Do not operate by fixing the piston rod and moving the actuator body.

Excessive load will be applied to the piston rod, leading to damage to the actuator and reduced the life of the product.

Handling

\triangle Caution

8. When an actuator is operated with one end fixed and the other free (ends tapped or flange type), a bending moment may act on the actuator due to vibration generated at the stroke end, which can damage the actuator. In such a case, install a mounting bracket to suppress the vibration of the actuator body or reduce the speed so that the actuator does not vibrate at the stroke end.

Also, use a mounting bracket when moving the actuator body or when a long stroke actuator is mounted horizontally and fixed at one end.
9. Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod. This may cause deformation of the non-rotating guide, abnormal responses of the auto switch, play in the internal guide or an increase in the sliding resistance.
Refer to the table below for the approximate values of the allowable range of rotational torque.

Allowable rotational torque $[\mathrm{N} \cdot \mathrm{m}]$ or less	LEY25	LEY32	LEY63

When screwing in a bracket or nut to the piston rod end, hold the flats of the end of the "socket" with a wrench (the piston rod should be fully retracted). Do not apply tightening torque to the non-rotating mechanism.

10. When using auto switch with the guide rod type LEYG series, the following limits will be in effect.
Select the product while paying attention to this.

- Insert the auto switch from the front side with rod (plate) sticking out.
The auto switches with perpendicular electrical entry cannot be used.
For the parts hidden behind the guide attachment (Rod stick out side), the auto switch cannot be fixed.
Please consult with SMC when using auto switch on the rod stick out side.

Enclosure

- First Characteristics: Degrees of protection against solid foreign objects

[^19]
LEY/LEYG Series

Electric Actuators

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website: https://www.smcworld.com

Enclosure

- Second Characteristics: Degrees of protection against water

$\mathbf{0}$	Non-protected	-
$\mathbf{1}$	Protected against vertically falling water drops	Dripproof type 1
$\mathbf{2}$	Protected against vertically falling water drops when enclosure tilted up to 15°	Dripproof type 2
$\mathbf{3}$	Protected against rainfall when enclosure tilted up to 60°	Rainproof type
$\mathbf{4}$	Protected against splashing water	Splashproof type
$\mathbf{5}$	Protected against water jets	Water-jet-proof type
$\mathbf{6}$	Protected against powerful water jets	Powerful water-jet- proof type
$\mathbf{7}$	Protected against the effects of temporary immersion in water	Immersible type
$\mathbf{8}$	Protected against the effects of continuous immersion in water	Submersible type

Example) IP65: Dust-tight, Water-jet-proof type
"Water-jet-proof type" means that no water intrudes inside an equipment that could hinder from operating normally by means of applying water for 3 minutes in the prescribed manner. Take appropriate protection measures, since a device is not usable in an environment where a droplet of water is splashed constantly.

Mounting

Caution

1. When mounting workpieces or jigs to the piston rod end "socket," hold the flats of the "socket" with a wrench so that the piston rod does not rotate. The bolt should be tightened within the specified torque range.
This may cause abnormal responses of the auto switch, play in the internal guide or an increase in the sliding resistance.
2. When mounting the product and/or a workpiece, tighten the mounting screws within the specified torque range.
Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

<LEY Series>

Workpiece fixed/Rod end female thread

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $[\mathrm{mm}]$	End socket widh across flats $[\mathrm{mm}]$
LEY25	M8 $\times 1.25$	12.5	13	17
LEY32	M8 $\times 1.25$	12.5	13	22
LEY63	$\mathrm{M} 16 \times 2$	106	21	36

Workpiece fixed/Rod end male thread (When "Rod end male thread" is selected.)

Model	Thread size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Efective thread length $[\mathrm{mm}]$	End socket widh across flats $[\mathrm{mm}]$
LEY25	M14 1.5	65.0	20.5	17
LEY32	M14 $\times 1.5$	65.0	20.5	22
LEY63	M18 $\times 1.5$	97.0	26	36

Model	Rod end nut		End bracket Widh across flats $[\mathrm{mm}]^{2}$
	screw-in depth $[\mathrm{mm}]$		
LEY25	22	8	8 or more
LEY32	22	8	8 or more
LEY63	27	11	11 or more

* Rod end nut is an accessory.

Body fixed/Rod side/Head side tapped type

Rod side

Body fixed/Head side tapped type

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	axx. screw-in depth $[\mathrm{mm}]$
LEYG25 $_{\mathrm{L}}^{\mathrm{M}}$	$\mathrm{M} 5 \times 0.8$	3.0	8
LEYG32 $_{\mathrm{L}}^{\mathrm{M}}$	$\mathrm{M} 6 \times 1.0$	5.2	10

LEY/LEYG Series Electric Actuators Specific Product Precautions 3

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website: https://www.smcworld.com

Mounting

\triangle Caution

3. Keep the flatness of the mounting surface within the following ranges when mounting the actuator body and workpiece.
Unevenness of a workpiece or base mounted on the body of the product may cause an increase in the sliding resistance.

Maintenance

© Warning

1. Ensure that the power supply is stopped and the workpiece is removed before starting maintenance work or replacement of the product.

- Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Belt check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months/ $250 \mathrm{~km} / 5$ million cycles*1	\bigcirc	\bigcirc

*1 Select whichever comes first.

- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for belt check

Stop operation immediately and replace the belt when belt appear to be below. Further, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out.

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.
b. Peeling off or wearing of the side of the belt

Belt corner becomes round and frayed thread sticks out.
c. Belt partially cut

Belt is partially cut. Foreign objects caught in teeth other than cut part causes flaw.
d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.
e. Rubber back of the belt is softened and sticky.
f. Crack on the back of the belt
2. For IP65 equivalent type, apply grease on the piston rod periodically. Grease should be applied at 1 million cycles or 200 km, whichever comes first.

- Grease pack order number: GR-S-010 (10 g)/GR-S-020 (20 g)

Safety Instructions
These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.

Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.
\triangle Danger:
Danger indicates a hazard with a high level of risk which,

\triangle Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications.
Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.
2. Only personnel with appropriate training should operate machinery and equipment.
The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.
3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
7. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
9. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
10. An application which could have negative effects on people, property, or animals requiring special safety analysis.
11. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.
*1) ISO 4414: Pneumatic fluid power - General rules relating to systems.
ISO 4413: Hydraulic fluid power - General rules relating to systems.
IEC 60204-1: Safety of machinery - Electrical equipment of machines. (Part 1: General requirements)
ISO 10218-1: Manipulating industrial robots - Safety.
etc.

\triangle Caution

1. The product is provided for use in manufacturing industries.

The product herein described is basically provided for peaceful use in manufacturing industries.
If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary.
If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements"
Read and accept them before using the product.

Limited warranty and Disclaimer

1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first. ${ }^{* 2)}$
Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided.
This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
*2) Vacuum pads are excluded from this 1 year warranty.
A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.
Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

\triangle Caution

SMC products are not intended for use as instruments for legal metrology.
Measurement instruments that SMC manufactures or sells have not been qualified by type approval tests relevant to the metrology (measurement) laws of each country. Therefore, SMC products cannot be used for business or certification ordained by the metrology (measurement) laws of each country.

Edition B * Compatible motor manufacturers have been added. * LEF: The motor parallel type has been added.

* LEY63: The motor top mounting and motor parallel types have been added.
* Number of pages has been increased from 88 to 108.

Edition C * A compatible motor manufacturer has been added. UO

Edifion D * LEF: An option without grease applied to the seal band part has been added. Auto switches and mounting brackets have been added. Positioning pin holes (Body bottom 2 locations) have been added.

* LEJ: Normally closed solid state auto switches have been added.
* LEY/LEYG: Intermediate strokes have been added to the LEY63 Normally closed solid state auto switches have been added. * Number of pages has been increased from 108 to 128.

[^0]: *1 Dimensions after mounting a ring spacer (Refer to page 27.)

[^1]: *1 Dimensions after mounting a ring spacer (Refer to page 27.)

[^2]: * When the LEF $\square \square \square{ }_{N M 3}^{N M 1} \square-\square$ is purchased, it is not possible to change to other motor types.

[^3]: *1 Dimensions after mounting a ring spacer

[^4]: *1 Dimensions after mounting a ring spacer (Refer to page 51.)

[^5]: *1 Dimensions after mounting a ring spacer (Refer to page 51.)

[^6]: 1 Dimensions after mounting a ring spacer (Refer to page 51.)

[^7]: *1 For screw sizes, refer to the hub mounting dimensions.

[^8]: ＊When the LEF $\square 25 N M 1 \square-\square$ is purchased，it is not possible to change to other motor types．

[^9]: * This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table. (Table clearance is included.)

[^10]: ＊When tightening the auto switch mounting screw（included with auto switch）， use a watchmaker＇s screwdriver with a handle diameter of about 5 to 6 mm ．

[^11]: *1 Equivalent lead which includes the screw lead 5 and the pulley ratio 4:7

[^12]: * When the motor is mounted on the left or right side in parallel, the groove for auto switch on the side to which the motor is mounted is hidden.

[^13]: Material: Cast iron (Coating)

 * The A, CL and L measurements are when the unit is at the retracted stroke end position.

[^14]: * The limit of vertical load mass varies depending on "lead" and "speed." Check the "Speed-Vertical Work Load Graph" on page 103.

[^15]: \triangle Caution

 ## Handling Precautions

 * When used as a stopper, select a model with 30 mm stroke or less.
 * LEYGロL (ball bushing bearing) cannot be used as a stopper.
 * Workpiece collision in series with guide rod cannot be permitted (Fig. a).
 * The body should not be mounted on the end. It must be mounted on the top or bottom (Fig. b).

[^16]: * The ED measurement is when the unit is at the retracted stroke end position.

[^17]: * The ED measurement is when the unit is at the retracted stroke end position.

[^18]: *1 Figures in the table above are used as a reference when mounting the auto switches for stroke end detection. Adjust the auto switch after confirming the operating condition in the actual setting.
 2 Switches cannot be mounted on the motor mounting side surface
 *3 For the LEYG with a guide, switches cannot be mounted on the guide attachment side (rod side).
 $* 4$ Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approximately $\pm 30 \%$ dispersion). It may change substantially depending on the ambient environment.

[^19]: Non-protected
 Protected against solid foreign objects of $50 \mathrm{~mm} \varnothing$ and greater
 Protected against solid foreign objects of 12 mm and greater
 Protected against solid foreign objects of $2.5 \mathrm{~mm} \varnothing$ and greater
 Protected against solid foreign objects of $1.0 \mathrm{~mm} \varnothing$ and greater
 Dust-protected
 Dust-tight

